Bimineralic Middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistry

Abstract This study reports on the occurrence of formerly bimineralic, ancient, calcitic coated grains, including half‐moon ooids and micritic to microsparitic ooids in the Middle Anisian (Middle Triassic) grain flow from Hydra Island (Greece), and discusses their importance for palaeoseawater geoch...

Full description

Bibliographic Details
Main Authors: Shahab Varkouhi, Luis Miguel Jaques Ribeiro
Format: Article
Language:English
Published: Wiley 2021-06-01
Series:The Depositional Record
Subjects:
Online Access:https://doi.org/10.1002/dep2.117
id doaj-461dc6a5a86c4ab89064ba8c944e85e7
record_format Article
spelling doaj-461dc6a5a86c4ab89064ba8c944e85e72021-07-08T09:45:02ZengWileyThe Depositional Record2055-48772021-06-017234436910.1002/dep2.117Bimineralic Middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistryShahab Varkouhi0Luis Miguel Jaques Ribeiro1Department of Earth Sciences University of Oxford Oxford UKInstitute for Geology, Mineralogy and Geophysics Ruhr‐University Bochum Bochum GermanyAbstract This study reports on the occurrence of formerly bimineralic, ancient, calcitic coated grains, including half‐moon ooids and micritic to microsparitic ooids in the Middle Anisian (Middle Triassic) grain flow from Hydra Island (Greece), and discusses their importance for palaeoseawater geochemical interpretations. The bi‐partite fabric in half‐moon ooids resulted from early pre‐compaction rapid dissolution of both aragonitic cortices and the more‐soluble components of the high‐Mg calcite core in the primary ooid, as well as the collapse of less‐dissolved remnants to the bottom of the oomouldic cavity which was later filled with calcite cement. Zonal, micritic to microsparitic ooids formed through intracortical dissolution of primary aragonite lamellae which were later replaced by (micro)sparry calcite. At the same time, recrystallization of original high‐Mg calcite layers to micrite occurred. The stratigraphic occurrence of the investigated bimineralic ooids conforms to the global distribution of carbonate ooids through the Middle Triassic period. The cementation history of the grain flow hosting coated grains is well documented by the paragenetic sequence established in half‐moon ooids which predicts that calcite precipitated under burial (shallow to deep) conditions. The main control on precipitation of bimineralic ooids was the Mg/Ca ratio of seawater, with lesser influences from seawater temperature, salinity and ρCO2 which promoted the degree of carbonate saturation, leading to higher precipitation rates for both aragonite and high‐Mg calcite. The studied bimineralic ooids represent a change in the global carbonate factory during the Middle Triassic in response to secular variations in the chemistry of palaeoseawater.https://doi.org/10.1002/dep2.117aragonitebimineralic ooidshigh‐Mg calciteHydra IslandMiddle Triassic
collection DOAJ
language English
format Article
sources DOAJ
author Shahab Varkouhi
Luis Miguel Jaques Ribeiro
spellingShingle Shahab Varkouhi
Luis Miguel Jaques Ribeiro
Bimineralic Middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistry
The Depositional Record
aragonite
bimineralic ooids
high‐Mg calcite
Hydra Island
Middle Triassic
author_facet Shahab Varkouhi
Luis Miguel Jaques Ribeiro
author_sort Shahab Varkouhi
title Bimineralic Middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistry
title_short Bimineralic Middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistry
title_full Bimineralic Middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistry
title_fullStr Bimineralic Middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistry
title_full_unstemmed Bimineralic Middle Triassic ooids from Hydra Island: Diagenetic pathways and implications for ancient seawater geochemistry
title_sort bimineralic middle triassic ooids from hydra island: diagenetic pathways and implications for ancient seawater geochemistry
publisher Wiley
series The Depositional Record
issn 2055-4877
publishDate 2021-06-01
description Abstract This study reports on the occurrence of formerly bimineralic, ancient, calcitic coated grains, including half‐moon ooids and micritic to microsparitic ooids in the Middle Anisian (Middle Triassic) grain flow from Hydra Island (Greece), and discusses their importance for palaeoseawater geochemical interpretations. The bi‐partite fabric in half‐moon ooids resulted from early pre‐compaction rapid dissolution of both aragonitic cortices and the more‐soluble components of the high‐Mg calcite core in the primary ooid, as well as the collapse of less‐dissolved remnants to the bottom of the oomouldic cavity which was later filled with calcite cement. Zonal, micritic to microsparitic ooids formed through intracortical dissolution of primary aragonite lamellae which were later replaced by (micro)sparry calcite. At the same time, recrystallization of original high‐Mg calcite layers to micrite occurred. The stratigraphic occurrence of the investigated bimineralic ooids conforms to the global distribution of carbonate ooids through the Middle Triassic period. The cementation history of the grain flow hosting coated grains is well documented by the paragenetic sequence established in half‐moon ooids which predicts that calcite precipitated under burial (shallow to deep) conditions. The main control on precipitation of bimineralic ooids was the Mg/Ca ratio of seawater, with lesser influences from seawater temperature, salinity and ρCO2 which promoted the degree of carbonate saturation, leading to higher precipitation rates for both aragonite and high‐Mg calcite. The studied bimineralic ooids represent a change in the global carbonate factory during the Middle Triassic in response to secular variations in the chemistry of palaeoseawater.
topic aragonite
bimineralic ooids
high‐Mg calcite
Hydra Island
Middle Triassic
url https://doi.org/10.1002/dep2.117
work_keys_str_mv AT shahabvarkouhi bimineralicmiddletriassicooidsfromhydraislanddiageneticpathwaysandimplicationsforancientseawatergeochemistry
AT luismigueljaquesribeiro bimineralicmiddletriassicooidsfromhydraislanddiageneticpathwaysandimplicationsforancientseawatergeochemistry
_version_ 1721313529232883712