Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes

Changes in baseline (here understood as representative of continental to hemispheric scales) tropospheric O<sub>3</sub> concentrations that have occurred at northern mid-latitudes over the past six decades are quantified from available measurement records with the goal of...

Full description

Bibliographic Details
Main Authors: D. D. Parrish, K. S. Law, J. Staehelin, R. Derwent, O. R. Cooper, H. Tanimoto, A. Volz-Thomas, S. Gilge, H.-E. Scheel, M. Steinbacher, E. Chan
Format: Article
Language:English
Published: Copernicus Publications 2012-12-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/11485/2012/acp-12-11485-2012.pdf
Description
Summary:Changes in baseline (here understood as representative of continental to hemispheric scales) tropospheric O<sub>3</sub> concentrations that have occurred at northern mid-latitudes over the past six decades are quantified from available measurement records with the goal of providing benchmarks to which retrospective model calculations of the global O<sub>3</sub> distribution can be compared. Eleven data sets (ten ground-based and one airborne) including six European (beginning in the 1950's and before), three North American (beginning in 1984) and two Asian (beginning in 1991) are analyzed. When the full time periods of the data records are considered a consistent picture emerges; O<sub>3</sub> has increased at all sites in all seasons at approximately 1% yr<sup>−1</sup> relative to the site's 2000 yr mixing ratio in each season. For perspective, this rate of increase sustained from 1950 to 2000 corresponds to an approximate doubling. There is little if any evidence for statistically significant differences in average rates of increase among the sites, regardless of varying length of data records. At most sites (most definitively at the European sites) the rate of increase has slowed over the last decade (possibly longer), to the extent that at present O<sub>3</sub> is decreasing at some sites in some seasons, particularly in summer. The average rate of increase before 2000 shows significant seasonal differences (1.08 ± 0.09, 0.89 ± 0.10, 0.85 ± 0.11 and 1.21 ± 0.12% yr<sup>−1</sup> in spring, summer, autumn and winter, respectively, over North America and Europe).
ISSN:1680-7316
1680-7324