Combustion Characteristics of Wood Panels Treated with Phosphorus-Nitrogen Additives

The combustion characteristics were evaluated for wood samples either untreated or treated with a piperazine-N-N´-bis(methylenephosphonic acid) flame retardant. Combustion properties were investigated using a cone calorimeter (ISO 5660-1 2002). The time to ignition of samples treated with the chemic...

Full description

Bibliographic Details
Main Authors: Eui Jin, Yeong-Jin Chung
Format: Article
Language:English
Published: North Carolina State University 2016-03-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_2_4319_Jin_Combustion_Characteristics_Wood_Panels
Description
Summary:The combustion characteristics were evaluated for wood samples either untreated or treated with a piperazine-N-N´-bis(methylenephosphonic acid) flame retardant. Combustion properties were investigated using a cone calorimeter (ISO 5660-1 2002). The time to ignition of samples treated with the chemical additive was delayed by 193%, 124%, and 61% for maple, ash, and cypress, respectively, compared with the untreated samples. Compared with the untreated sample, the PHRR value was reduced by 20% for t-ash and by 2.6% for cypress, whereas it was increased by 0.28% for t-maple. The time of PHRR for the treated sample was shifted to 1605 s (698%), 470 s (45%), and 340 s (32%) for cypress, ash, and maple, respectively, compared with the untreated samples. The reduced PHRR value and postponed time to PHRR indicated that combustion was suppressed by the thicker char layer. The mean CO yield of t-ash and t-cypress was increased by 2.9% and 27%, respectively, compared with the untreated sample, but t-maple was reduced by 46% compared with maple. The mean CO2 yield of t-maple, t-ash, and t-cypress was decreased by 4%, 13%, and 37%, respectively, compared with the untreated sample. The combustion properties of treated wood were inhibited more than those of untreated wood.
ISSN:1930-2126
1930-2126