A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice

Background: Bariatric surgery is an effective treatment for type 2 diabetes. Early post-surgical enhancement of insulin secretion is key for diabetes remission. The full complement of mechanisms responsible for improved pancreatic beta cell functionality after bariatric surgery is still unclear. Our...

Full description

Bibliographic Details
Main Authors: Chloé Amouyal, Julien Castel, Claudiane Guay, Amélie Lacombe, Jessica Denom, Stéphanie Migrenne-Li, Christine Rouault, Florian Marquet, Eleni Georgiadou, Theodoros Stylianides, Serge Luquet, Hervé Le Stunff, Raphael Scharfmann, Karine Clément, Guy A. Rutter, Olivier Taboureau, Christophe Magnan, Romano Regazzi, Fabrizio Andreelli
Format: Article
Language:English
Published: Elsevier 2020-08-01
Series:EBioMedicine
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S235239642030270X
id doaj-46ade57e556a4d639af37af56b46d965
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Chloé Amouyal
Julien Castel
Claudiane Guay
Amélie Lacombe
Jessica Denom
Stéphanie Migrenne-Li
Christine Rouault
Florian Marquet
Eleni Georgiadou
Theodoros Stylianides
Serge Luquet
Hervé Le Stunff
Raphael Scharfmann
Karine Clément
Guy A. Rutter
Olivier Taboureau
Christophe Magnan
Romano Regazzi
Fabrizio Andreelli
spellingShingle Chloé Amouyal
Julien Castel
Claudiane Guay
Amélie Lacombe
Jessica Denom
Stéphanie Migrenne-Li
Christine Rouault
Florian Marquet
Eleni Georgiadou
Theodoros Stylianides
Serge Luquet
Hervé Le Stunff
Raphael Scharfmann
Karine Clément
Guy A. Rutter
Olivier Taboureau
Christophe Magnan
Romano Regazzi
Fabrizio Andreelli
A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice
EBioMedicine
Diabetes
Bariatric surgery
Beta cell function
Insulin secretion
microRNA
ob/ob mouse
author_facet Chloé Amouyal
Julien Castel
Claudiane Guay
Amélie Lacombe
Jessica Denom
Stéphanie Migrenne-Li
Christine Rouault
Florian Marquet
Eleni Georgiadou
Theodoros Stylianides
Serge Luquet
Hervé Le Stunff
Raphael Scharfmann
Karine Clément
Guy A. Rutter
Olivier Taboureau
Christophe Magnan
Romano Regazzi
Fabrizio Andreelli
author_sort Chloé Amouyal
title A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice
title_short A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice
title_full A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice
title_fullStr A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice
title_full_unstemmed A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice
title_sort surrogate of roux-en-y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob mice
publisher Elsevier
series EBioMedicine
issn 2352-3964
publishDate 2020-08-01
description Background: Bariatric surgery is an effective treatment for type 2 diabetes. Early post-surgical enhancement of insulin secretion is key for diabetes remission. The full complement of mechanisms responsible for improved pancreatic beta cell functionality after bariatric surgery is still unclear. Our aim was to identify pathways, evident in the islet transcriptome, that characterize the adaptive response to bariatric surgery independently of body weight changes. Methods: We performed entero-gastro-anastomosis (EGA) with pyloric ligature in leptin-deficient ob/ob mice as a surrogate of Roux-en-Y gastric bypass (RYGB) in humans. Multiple approaches such as determination of glucose tolerance, GLP-1 and insulin secretion, whole body insulin sensitivity, ex vivo glucose-stimulated insulin secretion (GSIS) and functional multicellular Ca2+-imaging, profiling of mRNA and of miRNA expression were utilized to identify significant biological processes involved in pancreatic islet recovery. Findings: EGA resolved diabetes, increased pancreatic insulin content and GSIS despite a persistent increase in fat mass, systemic and intra-islet inflammation, and lipotoxicity. Surgery differentially regulated 193 genes in the islet, most of which were involved in the regulation of glucose metabolism, insulin secretion, calcium signaling or beta cell viability, and these were normalized alongside changes in glucose metabolism, intracellular Ca2+ dynamics and the threshold for GSIS. Furthermore, 27 islet miRNAs were differentially regulated, four of them hubs in a miRNA-gene interaction network and four others part of a blood signature of diabetes resolution in ob/ob mice and in humans. Interpretation: Taken together, our data highlight novel miRNA-gene interactions in the pancreatic islet during the resolution of diabetes after bariatric surgery that form part of a blood signature of diabetes reversal. Funding: European Union's Horizon 2020 research and innovation programme via the Innovative Medicines Initiative 2 Joint Undertaking (RHAPSODY), INSERM, Société Francophone du Diabète, Institut Benjamin Delessert, Wellcome Trust Investigator Award (212625/Z/18/Z), MRC Programme grants (MR/R022259/1, MR/J0003042/1, MR/L020149/1), Diabetes UK (BDA/11/0004210, BDA/15/0005275, BDA 16/0005485) project grants, National Science Foundation (310030–188447), Fondation de l'Avenir.
topic Diabetes
Bariatric surgery
Beta cell function
Insulin secretion
microRNA
ob/ob mouse
url http://www.sciencedirect.com/science/article/pii/S235239642030270X
work_keys_str_mv AT chloeamouyal asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT juliencastel asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT claudianeguay asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT amelielacombe asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT jessicadenom asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT stephaniemigrenneli asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT christinerouault asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT florianmarquet asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT elenigeorgiadou asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT theodorosstylianides asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT sergeluquet asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT hervelestunff asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT raphaelscharfmann asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT karineclement asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT guyarutter asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT oliviertaboureau asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT christophemagnan asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT romanoregazzi asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT fabrizioandreelli asurrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT chloeamouyal surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT juliencastel surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT claudianeguay surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT amelielacombe surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT jessicadenom surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT stephaniemigrenneli surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT christinerouault surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT florianmarquet surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT elenigeorgiadou surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT theodorosstylianides surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT sergeluquet surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT hervelestunff surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT raphaelscharfmann surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT karineclement surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT guyarutter surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT oliviertaboureau surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT christophemagnan surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT romanoregazzi surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
AT fabrizioandreelli surrogateofrouxenygastricbypasstheenterogastroanastomosissurgeryregulatesmultiplebetacellpathwaysduringresolutionofdiabetesinobobmice
_version_ 1724479589168709632
spelling doaj-46ade57e556a4d639af37af56b46d9652020-11-25T03:53:11ZengElsevierEBioMedicine2352-39642020-08-0158102895A surrogate of Roux-en-Y gastric bypass (the enterogastro anastomosis surgery) regulates multiple beta-cell pathways during resolution of diabetes in ob/ob miceChloé Amouyal0Julien Castel1Claudiane Guay2Amélie Lacombe3Jessica Denom4Stéphanie Migrenne-Li5Christine Rouault6Florian Marquet7Eleni Georgiadou8Theodoros Stylianides9Serge Luquet10Hervé Le Stunff11Raphael Scharfmann12Karine Clément13Guy A. Rutter14Olivier Taboureau15Christophe Magnan16Romano Regazzi17Fabrizio Andreelli18Sorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Diabetology department, F-75013 Paris, FranceUniversité de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, FranceDepartment of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, SwitzerlandPreclinICAN, Institute of Cardiometabolism and Nutrition, Paris, FranceUniversité de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, FranceUniversité de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, FranceSorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, FranceSorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, FranceSection of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UKLoughborough University, Loughborough, UKUniversité de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, FranceUniversité de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, FranceUniversité de Paris, Cochin Institute, Inserm U1016, Paris 75014, FranceSorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, France; APHP, Pitié-Salpêtrière Hospital, Nutrition department, F-75013 Paris, FranceSection of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Lee Kong Chian School of Medicine, Nan Yang Technological University, SingaporeUniversité de Paris, BFA, Team CMPLI, Inserm U1133, CNRS UMR 8251, Paris, France.Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, FranceDepartment of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH-1005 Lausanne, SwitzerlandSorbonne Université, INSERM, Nutrition and Obesities; Systemic approaches (NutriOmics), Paris, France; AP-HP, Pitié-Salpêtrière Hospital, Diabetology department, F-75013 Paris, France; Corresponding author at: AP-HP, Pitié-Salpêtrière Hospital, Diabetology department, F-75013 Paris, France.Background: Bariatric surgery is an effective treatment for type 2 diabetes. Early post-surgical enhancement of insulin secretion is key for diabetes remission. The full complement of mechanisms responsible for improved pancreatic beta cell functionality after bariatric surgery is still unclear. Our aim was to identify pathways, evident in the islet transcriptome, that characterize the adaptive response to bariatric surgery independently of body weight changes. Methods: We performed entero-gastro-anastomosis (EGA) with pyloric ligature in leptin-deficient ob/ob mice as a surrogate of Roux-en-Y gastric bypass (RYGB) in humans. Multiple approaches such as determination of glucose tolerance, GLP-1 and insulin secretion, whole body insulin sensitivity, ex vivo glucose-stimulated insulin secretion (GSIS) and functional multicellular Ca2+-imaging, profiling of mRNA and of miRNA expression were utilized to identify significant biological processes involved in pancreatic islet recovery. Findings: EGA resolved diabetes, increased pancreatic insulin content and GSIS despite a persistent increase in fat mass, systemic and intra-islet inflammation, and lipotoxicity. Surgery differentially regulated 193 genes in the islet, most of which were involved in the regulation of glucose metabolism, insulin secretion, calcium signaling or beta cell viability, and these were normalized alongside changes in glucose metabolism, intracellular Ca2+ dynamics and the threshold for GSIS. Furthermore, 27 islet miRNAs were differentially regulated, four of them hubs in a miRNA-gene interaction network and four others part of a blood signature of diabetes resolution in ob/ob mice and in humans. Interpretation: Taken together, our data highlight novel miRNA-gene interactions in the pancreatic islet during the resolution of diabetes after bariatric surgery that form part of a blood signature of diabetes reversal. Funding: European Union's Horizon 2020 research and innovation programme via the Innovative Medicines Initiative 2 Joint Undertaking (RHAPSODY), INSERM, Société Francophone du Diabète, Institut Benjamin Delessert, Wellcome Trust Investigator Award (212625/Z/18/Z), MRC Programme grants (MR/R022259/1, MR/J0003042/1, MR/L020149/1), Diabetes UK (BDA/11/0004210, BDA/15/0005275, BDA 16/0005485) project grants, National Science Foundation (310030–188447), Fondation de l'Avenir.http://www.sciencedirect.com/science/article/pii/S235239642030270XDiabetesBariatric surgeryBeta cell functionInsulin secretionmicroRNAob/ob mouse