TVID 2: evaluation of planar-type three-loop self-energy integrals with arbitrary masses

Abstract We present TVID 2, a program to numerically evaluate an important class of planar three-loop self-energy master integrals with arbitrary masses. As with the predecessor version (TVID 1) the integrals are separated into a known piece, containing the UV divergencies, and a finite piece that i...

Full description

Bibliographic Details
Main Authors: Stefan Bauberger, Ayres Freitas, Daniel Wiegand
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2020)024
Description
Summary:Abstract We present TVID 2, a program to numerically evaluate an important class of planar three-loop self-energy master integrals with arbitrary masses. As with the predecessor version (TVID 1) the integrals are separated into a known piece, containing the UV divergencies, and a finite piece that is integrated numerically, implemented in C. The set of master integrals under consideration was found with self-energy diagrams containing two closed fermion loops in mind. Two techniques are employed in deriving the expressions for the finite pieces that are then numerically integrated: (a) Sub-loop dispersion relations in the case of topologies containing sub-bubbles, and (b) a modification of the procedure suggested by Ghinculov for integrals with only sub-loop triangles.
ISSN:1029-8479