Upscaling methane emission hotspots in boreal peatlands

Upscaling the properties and effects of small-scale surface heterogeneities to larger scales is a challenging issue in land surface modeling. We developed a novel approach to upscale local methane emissions in a boreal peatland from the micro-topographic scale to the landscape scale. We based this n...

Full description

Bibliographic Details
Main Authors: F. Cresto Aleina, B. R. K. Runkle, T. Brücher, T. Kleinen, V. Brovkin
Format: Article
Language:English
Published: Copernicus Publications 2016-03-01
Series:Geoscientific Model Development
Online Access:http://www.geosci-model-dev.net/9/915/2016/gmd-9-915-2016.pdf
id doaj-46f25deddecc4fe1ae4e6e2c3bc30cc0
record_format Article
spelling doaj-46f25deddecc4fe1ae4e6e2c3bc30cc02020-11-24T22:36:00ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032016-03-019291592610.5194/gmd-9-915-2016Upscaling methane emission hotspots in boreal peatlandsF. Cresto Aleina0B. R. K. Runkle1T. Brücher2T. Kleinen3V. Brovkin4Max Planck Institute for Meteorology, Hamburg, GermanyInstitute of Soil Science, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, GermanyMax Planck Institute for Meteorology, Hamburg, GermanyMax Planck Institute for Meteorology, Hamburg, GermanyMax Planck Institute for Meteorology, Hamburg, GermanyUpscaling the properties and effects of small-scale surface heterogeneities to larger scales is a challenging issue in land surface modeling. We developed a novel approach to upscale local methane emissions in a boreal peatland from the micro-topographic scale to the landscape scale. We based this new parameterization on the analysis of the water table pattern generated by the Hummock–Hollow model, a micro-topography resolving model for peatland hydrology. We introduce this parameterization of methane hotspots in a global model-like version of the Hummock–Hollow model that underestimates methane emissions. We tested the robustness of the parameterization by simulating methane emissions for the next century, forcing the model with three different RCP scenarios. The Hotspot parameterization, despite being calibrated for the 1976–2005 climatology, mimics the output of the micro-topography resolving model for all the simulated scenarios. The new approach bridges the scale gap of methane emissions between this version of the model and the configuration explicitly resolving micro-topography.http://www.geosci-model-dev.net/9/915/2016/gmd-9-915-2016.pdf
collection DOAJ
language English
format Article
sources DOAJ
author F. Cresto Aleina
B. R. K. Runkle
T. Brücher
T. Kleinen
V. Brovkin
spellingShingle F. Cresto Aleina
B. R. K. Runkle
T. Brücher
T. Kleinen
V. Brovkin
Upscaling methane emission hotspots in boreal peatlands
Geoscientific Model Development
author_facet F. Cresto Aleina
B. R. K. Runkle
T. Brücher
T. Kleinen
V. Brovkin
author_sort F. Cresto Aleina
title Upscaling methane emission hotspots in boreal peatlands
title_short Upscaling methane emission hotspots in boreal peatlands
title_full Upscaling methane emission hotspots in boreal peatlands
title_fullStr Upscaling methane emission hotspots in boreal peatlands
title_full_unstemmed Upscaling methane emission hotspots in boreal peatlands
title_sort upscaling methane emission hotspots in boreal peatlands
publisher Copernicus Publications
series Geoscientific Model Development
issn 1991-959X
1991-9603
publishDate 2016-03-01
description Upscaling the properties and effects of small-scale surface heterogeneities to larger scales is a challenging issue in land surface modeling. We developed a novel approach to upscale local methane emissions in a boreal peatland from the micro-topographic scale to the landscape scale. We based this new parameterization on the analysis of the water table pattern generated by the Hummock–Hollow model, a micro-topography resolving model for peatland hydrology. We introduce this parameterization of methane hotspots in a global model-like version of the Hummock–Hollow model that underestimates methane emissions. We tested the robustness of the parameterization by simulating methane emissions for the next century, forcing the model with three different RCP scenarios. The Hotspot parameterization, despite being calibrated for the 1976–2005 climatology, mimics the output of the micro-topography resolving model for all the simulated scenarios. The new approach bridges the scale gap of methane emissions between this version of the model and the configuration explicitly resolving micro-topography.
url http://www.geosci-model-dev.net/9/915/2016/gmd-9-915-2016.pdf
work_keys_str_mv AT fcrestoaleina upscalingmethaneemissionhotspotsinborealpeatlands
AT brkrunkle upscalingmethaneemissionhotspotsinborealpeatlands
AT tbrucher upscalingmethaneemissionhotspotsinborealpeatlands
AT tkleinen upscalingmethaneemissionhotspotsinborealpeatlands
AT vbrovkin upscalingmethaneemissionhotspotsinborealpeatlands
_version_ 1725721676907282432