Self-Calibration of Joint RF Impairments in a Loopback Wideband Transceiver

This research studied transmitter/receiver (TX/RX) wideband (WB) RF impairments, namely frequency-dependent, frequency-independent I/Q imbalances and DC I/Q offsets. A real-based parallel structure is proposed to estimate and calibrate TX/RX WB RF impairment factors. RX impairment estimation and com...

Full description

Bibliographic Details
Main Authors: Juinn-Horng Deng, Chia-Fang Lee, Meng-Lin Ku, Jeng-Kuang Hwang
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9018196/
Description
Summary:This research studied transmitter/receiver (TX/RX) wideband (WB) RF impairments, namely frequency-dependent, frequency-independent I/Q imbalances and DC I/Q offsets. A real-based parallel structure is proposed to estimate and calibrate TX/RX WB RF impairment factors. RX impairment estimation and compensation are performed first using a frequency offset BPSK training signal. Then, the TX impairments are calibrated using a QPSK training signal. The proposed methods exhibited the following successes. First, a commercial off-the-shelf (COTS) AD9371 RF module with impairments was calibrated. After TX/RX calibration, the improvement of error vector measurement (EVM) of an OFDM 64QAM test signal was approximately 9.42 dB. Second, for the Taiwan Industrial Technology Research Institute's WB RF module with impairments, the EVM of an OFDM 16QAM test signal was calibrated and increased by about 20 dB. In summary, the proposed techniques can overcome WB RF impairments and enable high-quality WB communication.
ISSN:2169-3536