On free Lie algebras and particles in electro-magnetic fields
Abstract The Poincaré algebra can be extended (non-centrally) to the Maxwell algebra and beyond. These extensions are relevant for describing particle dynamics in electromagnetic backgrounds and possibly including the backreaction due the presence of multipoles. We point out a relation of this const...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-07-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP07(2017)085 |
Summary: | Abstract The Poincaré algebra can be extended (non-centrally) to the Maxwell algebra and beyond. These extensions are relevant for describing particle dynamics in electromagnetic backgrounds and possibly including the backreaction due the presence of multipoles. We point out a relation of this construction to free Lie algebras that gives a unified description of all possible kinematic extensions, leading to a symmetry algebra that we call Maxwell∞. A specific dynamical system with this infinite symmetry is constructed and analysed. |
---|---|
ISSN: | 1029-8479 |