Singularly perturbed semilinear Neumann problem with non-normally hyperbolic critical manifold

In this paper, we investigate the problem of existence and asymptotic behavior of the solutions for the nonlinear boundary value problem \begin{eqnarray*} \epsilon y''+ky=f(t,y),\quad t\in\langle a,b \rangle, \quad k>0,\quad 0<\epsilon<<1 \end{eqnarray*} satisfying Neumann boun...

Full description

Bibliographic Details
Main Author: Robert Vrabel
Format: Article
Language:English
Published: University of Szeged 2010-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=469
Description
Summary:In this paper, we investigate the problem of existence and asymptotic behavior of the solutions for the nonlinear boundary value problem \begin{eqnarray*} \epsilon y''+ky=f(t,y),\quad t\in\langle a,b \rangle, \quad k>0,\quad 0<\epsilon<<1 \end{eqnarray*} satisfying Neumann boundary conditions and where critical manifold is not normally hyperbolic. Our analysis relies on the method upper and lower solutions.
ISSN:1417-3875
1417-3875