Photogenerated Electrical Fields for Biomedical Applications

The application of electrical engineering principles to biology represents the main issue of bioelectronics, focusing on interfacing of electronics with biological systems. In particular, it includes many applications that take advantage of the peculiar optoelectronic and mechanical properties of or...

Full description

Bibliographic Details
Main Authors: Giuseppina Polino, Claudia Lubrano, Giuseppe Ciccone, Francesca Santoro
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-11-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fbioe.2018.00167/full
Description
Summary:The application of electrical engineering principles to biology represents the main issue of bioelectronics, focusing on interfacing of electronics with biological systems. In particular, it includes many applications that take advantage of the peculiar optoelectronic and mechanical properties of organic or inorganic semiconductors, from sensing of biomolecules to functional substrates for cellular growth. Among these, technologies for interacting with bioelectrical signals in living systems exploiting the electrical field of biomedical devices have attracted considerable attention. In this review, we present an overview of principal applications of phototransduction for the stimulation of electrogenic and non-electrogenic cells focusing on photovoltaic-based platforms.
ISSN:2296-4185