The isolation of the antagonistic strain Bacillus australimaris CQ07 and the exploration of the pathogenic inhibition mechanism of Magnaporthe oryzae.

Biological control as a promising method to combat plant disease has gained public attention in recent years. In the present study, we isolated 12 strains resistant to Magnaporthe oryzae from western Sichuan subalpine soil. Among them, CQ07 exhibited remarkable activity against M. oryzae. The result...

Full description

Bibliographic Details
Main Authors: Wenqian Chen, Lu Zhao, Hui Li, Yilun Dong, Hong Xu, Ying Guan, Songhao Rong, Xiaoling Gao, Rongjun Chen, Lihua Li, Zhengjun Xu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0220410
Description
Summary:Biological control as a promising method to combat plant disease has gained public attention in recent years. In the present study, we isolated 12 strains resistant to Magnaporthe oryzae from western Sichuan subalpine soil. Among them, CQ07 exhibited remarkable activity against M. oryzae. The result of 16S rRNA sequence analysis revealed that CQ07 is approximately 99% similar to Bacillus australimaris. The sterilized culture filtrate of CQ07 inhibited the growth of M. oryzae, which motivated us to deduce the influence of CQ07 on the pathogenicity of M. oryzae. As shown by experimentation, sterilized culture filtrate (10 μl/ml) of CQ07 can delay and even suppress the germination of conidia and prevent the formation of appressorium in vitro and in vivo. In addition, by simulative field tests, the spraying of conidia suspension diluted with sterilized culture filtrate of CQ07 reduced infection of rice blast. To better control rice blasts, understanding the infection mechanism of M. oryzae and inhibiting the mechanism of the antagonistic strain is of great importance.
ISSN:1932-6203