Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model

We study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nons...

Full description

Bibliographic Details
Main Authors: Ehsan Azmoodeh, Tommi Sottinen, Lauri Viitasaari
Format: Article
Language:English
Published: VTeX 2015-05-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA24
id doaj-47a84cee15b845ccafd3b206439061bb
record_format Article
spelling doaj-47a84cee15b845ccafd3b206439061bb2020-11-24T21:53:22ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542015-05-0121294910.15559/15-VMSTA24Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian modelEhsan Azmoodeh0Tommi Sottinen1Lauri Viitasaari2Mathematics Research Unit, Luxembourg University, P.O. Box L-1359, LuxembourgDepartment of Mathematics and Statistics, University of Vaasa, P.O. Box 700, FIN-65101 Vaasa, FinlandDepartment of Mathematics and System Analysis, Aalto University School of Science, Helsinki, P.O. Box 11100, FIN-00076 Aalto, Finland; Department of Mathematics, Saarland University, Post-fach 151150, D-66041 Saarbrücken, GermanyWe study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nonsemimartingale case, that is, where $H\in (1/2,3/4]$, the convergence toward the normal distribution with a nonzero mean still holds if $H=3/4$, whereas for the other values, that is, $H\in (1/2,3/4)$, the central convergence does not take place. We also provide Berry–Esseen estimates for the estimator.https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA24Central limit theoremmultiple Wiener integralsMalliavin calculusfractional Brownian motionquadratic variationrandomized periodogram
collection DOAJ
language English
format Article
sources DOAJ
author Ehsan Azmoodeh
Tommi Sottinen
Lauri Viitasaari
spellingShingle Ehsan Azmoodeh
Tommi Sottinen
Lauri Viitasaari
Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model
Modern Stochastics: Theory and Applications
Central limit theorem
multiple Wiener integrals
Malliavin calculus
fractional Brownian motion
quadratic variation
randomized periodogram
author_facet Ehsan Azmoodeh
Tommi Sottinen
Lauri Viitasaari
author_sort Ehsan Azmoodeh
title Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model
title_short Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model
title_full Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model
title_fullStr Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model
title_full_unstemmed Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian–fractional Brownian model
title_sort asymptotic normality of randomized periodogram for estimating quadratic variation in mixed brownian–fractional brownian model
publisher VTeX
series Modern Stochastics: Theory and Applications
issn 2351-6046
2351-6054
publishDate 2015-05-01
description We study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nonsemimartingale case, that is, where $H\in (1/2,3/4]$, the convergence toward the normal distribution with a nonzero mean still holds if $H=3/4$, whereas for the other values, that is, $H\in (1/2,3/4)$, the central convergence does not take place. We also provide Berry–Esseen estimates for the estimator.
topic Central limit theorem
multiple Wiener integrals
Malliavin calculus
fractional Brownian motion
quadratic variation
randomized periodogram
url https://vmsta.vtex.vmt/doi/10.15559/15-VMSTA24
work_keys_str_mv AT ehsanazmoodeh asymptoticnormalityofrandomizedperiodogramforestimatingquadraticvariationinmixedbrownianfractionalbrownianmodel
AT tommisottinen asymptoticnormalityofrandomizedperiodogramforestimatingquadraticvariationinmixedbrownianfractionalbrownianmodel
AT lauriviitasaari asymptoticnormalityofrandomizedperiodogramforestimatingquadraticvariationinmixedbrownianfractionalbrownianmodel
_version_ 1725872784407527424