Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblasts
Abstract Connective tissue growth factor (CTGF) associated with transforming growth factor-β (TGF-β) play a pivotal role in the pathophysiology of many fibrotic disorders. However, it is not clear whether this interaction also takes place in GO. In this study, we investigated the role of CTGF in TGF...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2018-05-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-018-25370-3 |
id |
doaj-47e4d2ecb6554644b05f12275d537fdc |
---|---|
record_format |
Article |
spelling |
doaj-47e4d2ecb6554644b05f12275d537fdc2020-12-08T05:14:16ZengNature Publishing GroupScientific Reports2045-23222018-05-018111010.1038/s41598-018-25370-3Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblastsChieh-Chih Tsai0Shi-Bei Wu1Hui-Chuan Kau2Yau-Huei Wei3Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming UniversityBiomedical Commercialization Center, Taipei Medical UniversityDepartment of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming UniversityCenter for Mitochondrial Medicine and Free Radical Research, Changhua Christian HospitalAbstract Connective tissue growth factor (CTGF) associated with transforming growth factor-β (TGF-β) play a pivotal role in the pathophysiology of many fibrotic disorders. However, it is not clear whether this interaction also takes place in GO. In this study, we investigated the role of CTGF in TGF-β-induced extracellular matrix production and myofibroblast transdifferentiation in Graves’ orbital fibroblasts. By Western blot analysis, we demonstrated that TGF-β1 induced the expression of CTGF, fibronectin, and alpha-smooth muscle actin (α-SMA) in Graves’ orbital fibroblasts. In addition, the protein levels of fibronectin and α-SMA in Graves’ orbital fibroblasts were also increased after treatment with a recombinant human protein CTGF (rhCTGF). Moreover, we transfected the orbital fibroblasts with a small hairpin RNA of CTGF gene (shCTGF) to knockdown the expression levels of CTGF, which showed that knockdown of CTGF significantly diminished TGF-β1-induced expression of CTGF, fibronectin and α-SMA proteins in Graves’ orbital fibroblasts. Furthermore, the addition of rhCTGF to the shCTGF-transfected orbital fibroblasts could restore TGF-β1-induced expression of fibronectin and α-SMA proteins. Our findings demonstrate that CTGF is an essential downstream mediator for TGF-β1-induced extracellular matrix production and myofibroblast transdifferentiation in Graves’ orbital fibroblasts and thus may provide with a potential therapeutic target for treatment of GO.https://doi.org/10.1038/s41598-018-25370-3 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chieh-Chih Tsai Shi-Bei Wu Hui-Chuan Kau Yau-Huei Wei |
spellingShingle |
Chieh-Chih Tsai Shi-Bei Wu Hui-Chuan Kau Yau-Huei Wei Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblasts Scientific Reports |
author_facet |
Chieh-Chih Tsai Shi-Bei Wu Hui-Chuan Kau Yau-Huei Wei |
author_sort |
Chieh-Chih Tsai |
title |
Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblasts |
title_short |
Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblasts |
title_full |
Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblasts |
title_fullStr |
Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblasts |
title_full_unstemmed |
Essential role of connective tissue growth factor (CTGF) in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from Graves’ orbital fibroblasts |
title_sort |
essential role of connective tissue growth factor (ctgf) in transforming growth factor-β1 (tgf-β1)-induced myofibroblast transdifferentiation from graves’ orbital fibroblasts |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2018-05-01 |
description |
Abstract Connective tissue growth factor (CTGF) associated with transforming growth factor-β (TGF-β) play a pivotal role in the pathophysiology of many fibrotic disorders. However, it is not clear whether this interaction also takes place in GO. In this study, we investigated the role of CTGF in TGF-β-induced extracellular matrix production and myofibroblast transdifferentiation in Graves’ orbital fibroblasts. By Western blot analysis, we demonstrated that TGF-β1 induced the expression of CTGF, fibronectin, and alpha-smooth muscle actin (α-SMA) in Graves’ orbital fibroblasts. In addition, the protein levels of fibronectin and α-SMA in Graves’ orbital fibroblasts were also increased after treatment with a recombinant human protein CTGF (rhCTGF). Moreover, we transfected the orbital fibroblasts with a small hairpin RNA of CTGF gene (shCTGF) to knockdown the expression levels of CTGF, which showed that knockdown of CTGF significantly diminished TGF-β1-induced expression of CTGF, fibronectin and α-SMA proteins in Graves’ orbital fibroblasts. Furthermore, the addition of rhCTGF to the shCTGF-transfected orbital fibroblasts could restore TGF-β1-induced expression of fibronectin and α-SMA proteins. Our findings demonstrate that CTGF is an essential downstream mediator for TGF-β1-induced extracellular matrix production and myofibroblast transdifferentiation in Graves’ orbital fibroblasts and thus may provide with a potential therapeutic target for treatment of GO. |
url |
https://doi.org/10.1038/s41598-018-25370-3 |
work_keys_str_mv |
AT chiehchihtsai essentialroleofconnectivetissuegrowthfactorctgfintransforminggrowthfactorb1tgfb1inducedmyofibroblasttransdifferentiationfromgravesorbitalfibroblasts AT shibeiwu essentialroleofconnectivetissuegrowthfactorctgfintransforminggrowthfactorb1tgfb1inducedmyofibroblasttransdifferentiationfromgravesorbitalfibroblasts AT huichuankau essentialroleofconnectivetissuegrowthfactorctgfintransforminggrowthfactorb1tgfb1inducedmyofibroblasttransdifferentiationfromgravesorbitalfibroblasts AT yauhueiwei essentialroleofconnectivetissuegrowthfactorctgfintransforminggrowthfactorb1tgfb1inducedmyofibroblasttransdifferentiationfromgravesorbitalfibroblasts |
_version_ |
1724391747406004224 |