Summary: | The molecular interactions of anionic tetrasulfonate phenyl porphyrin (TPPS) with poly(amido amine) (PAMAM) dendrimers of generation 2.0 and 4.0 (G2 and G4, respectively) forming H- or J-aggregates, as well as with human and bovine serum albumin proteins (HSA and BSA), were reviewed in the context of self-assembly molecular complementarity. The spectroscopic studies were extended to the association of aluminum phthtalocyanine (AlPCS<sub>4</sub>) detected with a PAMAM G4 dendrimer with fluorescence studies in both steady state and dynamic state, as well as due to the fluorescence quenching associated to electron-transfer with a distribution of lifetimes. The functionalization of TPPS with peripheral substituents enables the assignment of spontaneous pH-induced aggregates with different and well-defined morphologies. Other work reported in the literature, in particular with soft self-assembly materials, fall in the same area with particular interest for the environment. The microencapsulation of TPPS studies into polyelectrolyte capsules was developed quite recently and aroused much interest, which is well supported and complemented by the extensive data reported on the Imaging Microscopy section of the Luminescence of Porphyrins and Phthalocyanines included in the present review.
|