Theoretical and Experimental Investigation of Characteristics of Single Fracture Stress-Seepage Coupling considering Microroughness

Based on the results of the test among the joint roughness coefficient (JRC) of rock fracture, mechanical aperture, and hydraulic aperture proposed by Barton, this paper deduces and proposes a permeability coefficient formula of single fracture stress-seepage coupling considering microroughness by t...

Full description

Bibliographic Details
Main Authors: Shengtong Di, Chao Jia, Weiguo Qiao, Weijiang Yu, Kang Li
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2017/6431690
Description
Summary:Based on the results of the test among the joint roughness coefficient (JRC) of rock fracture, mechanical aperture, and hydraulic aperture proposed by Barton, this paper deduces and proposes a permeability coefficient formula of single fracture stress-seepage coupling considering microroughness by the introduction of effect variables considering the microparticle size and structural morphology of facture surface. Quasi-sandstone fracture of different particle size is made by the laboratory test, and the respective modification is made on the coupled shear-seepage test system of JAW-600 rock. Under this condition, the laboratory test of stress-seepage coupling of fracture of different particle size is carried out. The test results show that, for the different particle-sized fracture surface of the same JRC, the permeability coefficient is different, which means the smaller particle size, the smaller permeability coefficient, and the larger particle size, the larger permeability coefficient; with the increase of cranny hydraulic pressure, the permeability coefficient increases exponentially, and under the same cranny hydraulic pressure, there is relation of power function between the permeability coefficient and normal stress. Meanwhile, according to the theoretical formula, the microroughness coefficient of the fractures with different particle size is obtained by the calculation, and its accuracy and validity are verified by experiments. The theoretical verification values are in good agreement with the measured values.
ISSN:1024-123X
1563-5147