Bacterial Community Characterization in Paper Mill White Water

The paper production process is significantly affected by direct and indirect effects of microorganism proliferation. Microorganisms can be introduced in different steps. Some microorganisms find optimum growth conditions and proliferate along the production process, affecting both the end product q...

Full description

Bibliographic Details
Main Authors: Carolina Chiellini, Renato Iannelli, Raissa Lena, Maria Gullo, Giulio Petroni
Format: Article
Language:English
Published: North Carolina State University 2014-03-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_2_2541_Chiellini_Bacterial_Paper_Mill
Description
Summary:The paper production process is significantly affected by direct and indirect effects of microorganism proliferation. Microorganisms can be introduced in different steps. Some microorganisms find optimum growth conditions and proliferate along the production process, affecting both the end product quality and the production efficiency. The increasing need to reduce water consumption for economic and environmental reasons has led most paper mills to reuse water through increasingly closed cycles, thus exacerbating the bacterial proliferation problem. In this work, microbial communities in a paper mill located in Italy were characterized using both culture-dependent and independent methods. Fingerprinting molecular analysis and 16S rRNA library construction coupled with bacterial isolation were performed. Results highlighted that the bacterial community composition was spatially homogeneous along the whole process, while it was slightly variable over time. The culture-independent approach confirmed the presence of the main bacterial phyla detected with plate counting, coherently with earlier cultivation studies (Proteobacteria, Bacteroidetes, and Firmicutes), but with a higher genus diversification than previously observed. Some minor bacterial groups, not detectable by cultivation, were also detected in the aqueous phase. Overall, the population dynamics observed with the double approach led us to hypothesize a possible role of suspended bacteria in the re-formation mechanisms of resistant biofilms.
ISSN:1930-2126
1930-2126