The Fuglede-Putnam theorem for <inline-formula><graphic file="1029-242X-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operators

<p/> <p>We show that if <inline-formula><graphic file="1029-242X-2006-47481-i2.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2006-47481-i3.gif"/></inline-formula>-quasihyponormal operator and <inline-formu...

Full description

Bibliographic Details
Main Author: Kim In Hyoun
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2006/47481
id doaj-48c16cf08fab4d889d6b1e2b8dd50916
record_format Article
spelling doaj-48c16cf08fab4d889d6b1e2b8dd509162020-11-24T23:28:52ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2006-01-012006147481The Fuglede-Putnam theorem for <inline-formula><graphic file="1029-242X-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operatorsKim In Hyoun<p/> <p>We show that if <inline-formula><graphic file="1029-242X-2006-47481-i2.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2006-47481-i3.gif"/></inline-formula>-quasihyponormal operator and <inline-formula><graphic file="1029-242X-2006-47481-i4.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2006-47481-i5.gif"/></inline-formula>-hyponormal operator, and if <inline-formula><graphic file="1029-242X-2006-47481-i6.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-47481-i7.gif"/></inline-formula> is a quasiaffinity (i.e., a one-one map having dense range), then <inline-formula><graphic file="1029-242X-2006-47481-i8.gif"/></inline-formula> is a normal and moreover <inline-formula><graphic file="1029-242X-2006-47481-i9.gif"/></inline-formula> is unitarily equivalent to <inline-formula><graphic file="1029-242X-2006-47481-i10.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/2006/47481
collection DOAJ
language English
format Article
sources DOAJ
author Kim In Hyoun
spellingShingle Kim In Hyoun
The Fuglede-Putnam theorem for <inline-formula><graphic file="1029-242X-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operators
Journal of Inequalities and Applications
author_facet Kim In Hyoun
author_sort Kim In Hyoun
title The Fuglede-Putnam theorem for <inline-formula><graphic file="1029-242X-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operators
title_short The Fuglede-Putnam theorem for <inline-formula><graphic file="1029-242X-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operators
title_full The Fuglede-Putnam theorem for <inline-formula><graphic file="1029-242X-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operators
title_fullStr The Fuglede-Putnam theorem for <inline-formula><graphic file="1029-242X-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operators
title_full_unstemmed The Fuglede-Putnam theorem for <inline-formula><graphic file="1029-242X-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operators
title_sort fuglede-putnam theorem for <inline-formula><graphic file="1029-242x-2006-47481-i1.gif"/></inline-formula>-quasihyponormal operators
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2006-01-01
description <p/> <p>We show that if <inline-formula><graphic file="1029-242X-2006-47481-i2.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2006-47481-i3.gif"/></inline-formula>-quasihyponormal operator and <inline-formula><graphic file="1029-242X-2006-47481-i4.gif"/></inline-formula> is a <inline-formula><graphic file="1029-242X-2006-47481-i5.gif"/></inline-formula>-hyponormal operator, and if <inline-formula><graphic file="1029-242X-2006-47481-i6.gif"/></inline-formula>, where <inline-formula><graphic file="1029-242X-2006-47481-i7.gif"/></inline-formula> is a quasiaffinity (i.e., a one-one map having dense range), then <inline-formula><graphic file="1029-242X-2006-47481-i8.gif"/></inline-formula> is a normal and moreover <inline-formula><graphic file="1029-242X-2006-47481-i9.gif"/></inline-formula> is unitarily equivalent to <inline-formula><graphic file="1029-242X-2006-47481-i10.gif"/></inline-formula>.</p>
url http://www.journalofinequalitiesandapplications.com/content/2006/47481
work_keys_str_mv AT kiminhyoun thefugledeputnamtheoremforinlineformulagraphicfile1029242x200647481i1gifinlineformulaquasihyponormaloperators
AT kiminhyoun fugledeputnamtheoremforinlineformulagraphicfile1029242x200647481i1gifinlineformulaquasihyponormaloperators
_version_ 1725547456411729920