Slow divergence integrals in generalized Liénard equations near centers

Using techniques from singular perturbations we show that for any $n\ge 6$ and $m\ge 2$ there are Liénard equations $\{\dot{x}=y-F(x),\ \dot{y}=G(x)\}$, with $F$ a polynomial of degree $n$ and $G$ a polynomial of degree $m$, having at least $2[\frac{n-2}{2}]+[\frac{m}{2}]$ hyperbolic limit cycles,...

Full description

Bibliographic Details
Main Authors: Renato Huzak, Peter De Maesschalck
Format: Article
Language:English
Published: University of Szeged 2014-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3307
id doaj-48c45439b68c43819eb296bac2313346
record_format Article
spelling doaj-48c45439b68c43819eb296bac23133462021-07-14T07:21:26ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752014-12-0120146611010.14232/ejqtde.2014.1.663307Slow divergence integrals in generalized Liénard equations near centersRenato Huzak0Peter De Maesschalck1Hasselt University, Diepenbeek, BelgiumHasselt University, Diepenbeek, BelgiumUsing techniques from singular perturbations we show that for any $n\ge 6$ and $m\ge 2$ there are Liénard equations $\{\dot{x}=y-F(x),\ \dot{y}=G(x)\}$, with $F$ a polynomial of degree $n$ and $G$ a polynomial of degree $m$, having at least $2[\frac{n-2}{2}]+[\frac{m}{2}]$ hyperbolic limit cycles, where $[\cdot]$ denotes "the greatest integer equal or below".http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3307generalized liénard equationslimit cyclesslow divergence integralslow-fast systems
collection DOAJ
language English
format Article
sources DOAJ
author Renato Huzak
Peter De Maesschalck
spellingShingle Renato Huzak
Peter De Maesschalck
Slow divergence integrals in generalized Liénard equations near centers
Electronic Journal of Qualitative Theory of Differential Equations
generalized liénard equations
limit cycles
slow divergence integral
slow-fast systems
author_facet Renato Huzak
Peter De Maesschalck
author_sort Renato Huzak
title Slow divergence integrals in generalized Liénard equations near centers
title_short Slow divergence integrals in generalized Liénard equations near centers
title_full Slow divergence integrals in generalized Liénard equations near centers
title_fullStr Slow divergence integrals in generalized Liénard equations near centers
title_full_unstemmed Slow divergence integrals in generalized Liénard equations near centers
title_sort slow divergence integrals in generalized liénard equations near centers
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2014-12-01
description Using techniques from singular perturbations we show that for any $n\ge 6$ and $m\ge 2$ there are Liénard equations $\{\dot{x}=y-F(x),\ \dot{y}=G(x)\}$, with $F$ a polynomial of degree $n$ and $G$ a polynomial of degree $m$, having at least $2[\frac{n-2}{2}]+[\frac{m}{2}]$ hyperbolic limit cycles, where $[\cdot]$ denotes "the greatest integer equal or below".
topic generalized liénard equations
limit cycles
slow divergence integral
slow-fast systems
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=3307
work_keys_str_mv AT renatohuzak slowdivergenceintegralsingeneralizedlienardequationsnearcenters
AT peterdemaesschalck slowdivergenceintegralsingeneralizedlienardequationsnearcenters
_version_ 1721303587133325312