Slow divergence integrals in generalized Liénard equations near centers
Using techniques from singular perturbations we show that for any $n\ge 6$ and $m\ge 2$ there are Liénard equations $\{\dot{x}=y-F(x),\ \dot{y}=G(x)\}$, with $F$ a polynomial of degree $n$ and $G$ a polynomial of degree $m$, having at least $2[\frac{n-2}{2}]+[\frac{m}{2}]$ hyperbolic limit cycles,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2014-12-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3307 |
id |
doaj-48c45439b68c43819eb296bac2313346 |
---|---|
record_format |
Article |
spelling |
doaj-48c45439b68c43819eb296bac23133462021-07-14T07:21:26ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752014-12-0120146611010.14232/ejqtde.2014.1.663307Slow divergence integrals in generalized Liénard equations near centersRenato Huzak0Peter De Maesschalck1Hasselt University, Diepenbeek, BelgiumHasselt University, Diepenbeek, BelgiumUsing techniques from singular perturbations we show that for any $n\ge 6$ and $m\ge 2$ there are Liénard equations $\{\dot{x}=y-F(x),\ \dot{y}=G(x)\}$, with $F$ a polynomial of degree $n$ and $G$ a polynomial of degree $m$, having at least $2[\frac{n-2}{2}]+[\frac{m}{2}]$ hyperbolic limit cycles, where $[\cdot]$ denotes "the greatest integer equal or below".http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3307generalized liénard equationslimit cyclesslow divergence integralslow-fast systems |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Renato Huzak Peter De Maesschalck |
spellingShingle |
Renato Huzak Peter De Maesschalck Slow divergence integrals in generalized Liénard equations near centers Electronic Journal of Qualitative Theory of Differential Equations generalized liénard equations limit cycles slow divergence integral slow-fast systems |
author_facet |
Renato Huzak Peter De Maesschalck |
author_sort |
Renato Huzak |
title |
Slow divergence integrals in generalized Liénard equations near centers |
title_short |
Slow divergence integrals in generalized Liénard equations near centers |
title_full |
Slow divergence integrals in generalized Liénard equations near centers |
title_fullStr |
Slow divergence integrals in generalized Liénard equations near centers |
title_full_unstemmed |
Slow divergence integrals in generalized Liénard equations near centers |
title_sort |
slow divergence integrals in generalized liénard equations near centers |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2014-12-01 |
description |
Using techniques from singular perturbations we show that for any $n\ge 6$ and $m\ge 2$ there are Liénard equations $\{\dot{x}=y-F(x),\ \dot{y}=G(x)\}$, with $F$ a polynomial of degree $n$ and $G$ a polynomial of degree $m$, having at least $2[\frac{n-2}{2}]+[\frac{m}{2}]$ hyperbolic limit cycles, where $[\cdot]$ denotes "the greatest integer equal or below". |
topic |
generalized liénard equations limit cycles slow divergence integral slow-fast systems |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=3307 |
work_keys_str_mv |
AT renatohuzak slowdivergenceintegralsingeneralizedlienardequationsnearcenters AT peterdemaesschalck slowdivergenceintegralsingeneralizedlienardequationsnearcenters |
_version_ |
1721303587133325312 |