Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids

Particle focusing and separation using viscoelastic microfluidic technology have attracted lots of attention in many applications. In this paper, a three-dimensional lattice Boltzmann method (LBM) coupled with the immersed boundary method (IBM) is employed to study the focusing and separation of par...

Full description

Bibliographic Details
Main Authors: Chen Ni, Di Jiang
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/10/908
Description
Summary:Particle focusing and separation using viscoelastic microfluidic technology have attracted lots of attention in many applications. In this paper, a three-dimensional lattice Boltzmann method (LBM) coupled with the immersed boundary method (IBM) is employed to study the focusing and separation of particles in viscoelastic fluid. In this method, the viscoelastic fluid is simulated by the LBM with two sets of distribution functions and the fluid–particle interaction is calculated by the IBM. The performance of particle focusing under different microchannel aspect ratios (AR) is explored and the focusing equilibrium positions of the particles with various elasticity numbers and particle diameters are compared to illustrate the mechanism of particle focusing and separation in viscoelastic fluids. The results indicate that, for particle focusing in the square channel (AR = 1), the centerline single focusing becomes a bistable focusing at the centerline and corners as <i>El</i> increases. In the rectangular channels (AR < 1), particles with different diameters have different equilibrium positions. The equilibrium position of large particles is closer to the wall, and large particles have a faster lateral migration speed and few large particles migrate towards the channel center. Compared with the square channel, the rectangular channel is a better design for particle separation.
ISSN:2072-666X