circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a

Abstract Backgroud Accumulating evidences indicate that circular RNAs (circRNAs), a class of non-coding RNAs, play important roles in tumorigenesis. However, the function of circRNAs in triple negative breast cancer (TNBC) is largely unknown. Methods We performed circRNA microarrays to identify circ...

Full description

Bibliographic Details
Main Authors: Rongfang He, Peng Liu, Xiaoming Xie, Yujuan Zhou, Qianjin Liao, Wei Xiong, Xiaoling Li, Guiyuan Li, Zhaoyang Zeng, Hailin Tang
Format: Article
Language:English
Published: BMC 2017-10-01
Series:Journal of Experimental & Clinical Cancer Research
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13046-017-0614-1
Description
Summary:Abstract Backgroud Accumulating evidences indicate that circular RNAs (circRNAs), a class of non-coding RNAs, play important roles in tumorigenesis. However, the function of circRNAs in triple negative breast cancer (TNBC) is largely unknown. Methods We performed circRNA microarrays to identify circRNAs that are aberrantly expressed in TNBC cell lines. Expression levels of a significantly upregulated circRNA, circGFRA1, was detected by quantitative real-time PCR (qRT-PCR) in TNBC cell lines and tissues. Kaplan-Meier survival analysis was used to explore the significance of circGFRA1 in clinical prognosis. Then, we examined the functions of circGFRA1 in TNBC by cell proliferation, apoptosis and mouse xenograft assay. In addition, luciferase assay was used to explore the miRNA sponge function of circGFRA1 in TNBC. Results Microarray analysis and qRT-PCR verified a circRNA termed circGFRA1 that was upregulated in TNBC. Kaplan-Meier survival analysis showed that upregulated circGFRA1 was correlated with poorer survival. Knockdown of circGFRA1 inhibited proliferation and promoted apoptosis in TNBC. Via luciferase reporter assays, circGFRA1 and GFRA1 was observed to directly bind to miR-34a. Subsequent experiments showed that circGFRA1 and GFRA1 regulated the expression of each other by sponging miR-34a. Conclusions Taken together, we conclude that circGFRA1 may function as a competing endogenous RNA (ceRNA) to regulate GFRA1 expression through sponging miR-34a to exert regulatory functions in TNBC. circGFRA1 may be a diagnostic biomarker and potential target for TNBC therapy.
ISSN:1756-9966