A synthetic cationic antimicrobial peptide inhibits inflammatory response and the NLRP3 inflammasome by neutralizing LPS and ATP.

Antimicrobial peptides (AMPs) are one of the most important defense mechanisms against bacterial infections in insects, plants, non-mammalian vertebrates, and mammals. In the present study, a class of synthetic AMPs was evaluated for anti-inflammatory activity. One cationic AMP, GW-A2, demonstrated...

Full description

Bibliographic Details
Main Authors: Lan-Hui Li, Tz-Chuen Ju, Chih-Yu Hsieh, Wei-Chih Dong, Wan-Tze Chen, Kuo-Feng Hua, Wei-Jung Chen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5531531?pdf=render
Description
Summary:Antimicrobial peptides (AMPs) are one of the most important defense mechanisms against bacterial infections in insects, plants, non-mammalian vertebrates, and mammals. In the present study, a class of synthetic AMPs was evaluated for anti-inflammatory activity. One cationic AMP, GW-A2, demonstrated the ability to inhibit the expression levels of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-activated macrophages. GW-A2 reduced LPS-induced increases in the phosphorylation of mitogen-activated protein kinase and protein kinase C-α/δ and the activation of NF-κB. GW-A2 also inhibited NLRP3 inflammasome activation induced by LPS and ATP. Furthermore, in the mice injected with LPS, GW-A2 reduced (1) the concentration of IL-1β, IL-6 and TNF-α in the serum; (2) the concentration of TNF-α in the peritoneal lavage; (3) the expression levels of iNOS, COX-2 and NLRP3 in the liver and lung; (4) the infiltration of polymorphonuclear neutrophils in the liver and lung. The underlying mechanisms for the anti-inflammatory activity of GW-A2 were found to be partially due to LPS and ATP neutralization. These results provide insights into how GW-A2 inhibits inflammation and the NLRP3 inflammasome and provide a foundation for the design of rational therapeutics for inflammation-related diseases.
ISSN:1932-6203