CO Preferential Photo-Oxidation in Excess of Hydrogen in Dark and Simulated Solar Light Irradiation over AuCu-Based Catalysts on SBA-15 Mesoporous Silica-Titania

In this work, SBA-15 silica and silica-titania have been used as supports for photocatalysts based on AuCu alloy (Au:Cu = 1) to be used in the preferential oxidation of CO (CO-PROX) in excess of hydrogen at room temperature and atmospheric pressure both in the dark and under simulated solar light ir...

Full description

Bibliographic Details
Main Authors: Isabel Barroso-Martín, Antonia Infantes-Molina, Aldo Talon, Loretta Storaro, Elena Rodríguez-Aguado, Enrique Rodríguez-Castellón, Elisa Moretti
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Materials
Subjects:
Online Access:http://www.mdpi.com/1996-1944/11/7/1203
Description
Summary:In this work, SBA-15 silica and silica-titania have been used as supports for photocatalysts based on AuCu alloy (Au:Cu = 1) to be used in the preferential oxidation of CO (CO-PROX) in excess of hydrogen at room temperature and atmospheric pressure both in the dark and under simulated solar light irradiation. To study their textural, structural, chemical and optical properties, the samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), adsorption-desorption of N2 at −196 °C, 13C and 29Si solid state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance ultraviolet-visible (DRUV-vis) spectroscopy. Titanium was present mainly in the form of titania aggregates, but also as small particles interacting with the SBA support. In both catalysts, the metal alloy nanoparticles displayed an average size of 4 nm as demonstrated by TEM measurements. AuCu/Ti-SBA turned out to be photoactive and selective in the photo-CO-PROX reaction showing the highest activity, with conversion and selectivity towards CO2 of 80%, due both to the presence of titania incorporated in SBA-15 and to the synergistic effect of Cu when alloyed with Au.
ISSN:1996-1944