Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromati...

Full description

Bibliographic Details
Main Authors: L. Hildebrandt Ruiz, A. L. Paciga, K. M. Cerully, A. Nenes, N. M. Donahue, S. N. Pandis
Format: Article
Language:English
Published: Copernicus Publications 2015-07-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/15/8301/2015/acp-15-8301-2015.pdf
Description
Summary:Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO<sub><i>x</i></sub> under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS<sub>c</sub>), and mass yield. The OA oxidation state generally increased during photo-oxidation, and the final OA OS<sub>c</sub> ranged from −0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.
ISSN:1680-7316
1680-7324