Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation

Phonon polaritons hold promises for nanophotonic applications but external control of phonon polaritons remains challenging. Here, the authors achieve reversible and non-volatile switching of phonon polariton by modifying crystal structure and lattice vibrations via hydrogenation.

Bibliographic Details
Main Authors: Yingjie Wu, Qingdong Ou, Yuefeng Yin, Yun Li, Weiliang Ma, Wenzhi Yu, Guanyu Liu, Xiaoqiang Cui, Xiaozhi Bao, Jiahua Duan, Gonzalo Álvarez-Pérez, Zhigao Dai, Babar Shabbir, Nikhil Medhekar, Xiangping Li, Chang-Ming Li, Pablo Alonso-González, Qiaoliang Bao
Format: Article
Language:English
Published: Nature Publishing Group 2020-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-16459-3
Description
Summary:Phonon polaritons hold promises for nanophotonic applications but external control of phonon polaritons remains challenging. Here, the authors achieve reversible and non-volatile switching of phonon polariton by modifying crystal structure and lattice vibrations via hydrogenation.
ISSN:2041-1723