Facile preparation of silver nanoparticles and antibacterial Chitosan-Ag polymeric nanocomposites

Silver nanostructures as an effective antibacterial materials were synthesized via three various hydrothermal, sono-chemical and microwave methods using water as a green solvent. Then Chitosan-Ag polymer based nanocomposites were made by a fast chemical procedure. The influence of power, temperature...

Full description

Bibliographic Details
Main Authors: Ziba Sorinezami, Davood Ghanbari
Format: Article
Language:English
Published: Nanoscience and Nanotechnology Research Center, University of Kashan 2019-07-01
Series:Journal of Nanostructures
Subjects:
Online Access:http://jns.kashanu.ac.ir/article_92208_fc4ac750cf333e965b516a44b0cb9cc9.pdf
Description
Summary:Silver nanostructures as an effective antibacterial materials were synthesized via three various hydrothermal, sono-chemical and microwave methods using water as a green solvent. Then Chitosan-Ag polymer based nanocomposites were made by a fast chemical procedure. The influence of power, temperature and time on the morphology and particle size of the products was investigated. Scanning electron microscopy (SEM) approved that mono-disperse nanoparticles were achieved using all three procedures. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy confirmed preparation of pure products. The antibacterial behaviour of Chitosan-Ag nanocomposites was evaluated using degradation of E coli bacteria. The results show a nanocomposite with applicable antibacterial performance in burn wounds. <br />Silver nanostructures as an effective antibacterial materials were synthesized via three various hydrothermal, sono-chemical and microwave methods using water as a green solvent. Then Chitosan-Ag polymer based nanocomposites were made by a fast chemical procedure. The influence of power, temperature and time on the morphology and particle size of the products was investigated. Scanning electron microscopy (SEM) approved that mono-disperse nanoparticles were achieved using all three procedures. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy confirmed preparation of pure products. The antibacterial behaviour of Chitosan-Ag nanocomposites was evaluated using degradation of E coli bacteria. The results show a nanocomposite with applicable antibacterial performance in burn wounds.
ISSN:2251-7871
2251-788X