Effect of physiological parameters on glucose microcirculation compartmental model in glucose monitoring

A glucose microcirculation compartmental model (GMCM) for predicting blood glucose concentrations from the reference interstitial fluid (ISF) glucose concentrations was proposed before. It was used to compensate the delay error in ISF in order to improve the prediction accuracy and to facilitate the...

Full description

Bibliographic Details
Main Authors: Ting Shi, Yiming Zhang, Luo Lu
Format: Article
Language:English
Published: Taylor & Francis Group 2018-07-01
Series:Biotechnology & Biotechnological Equipment
Subjects:
Online Access:http://dx.doi.org/10.1080/13102818.2017.1413595
Description
Summary:A glucose microcirculation compartmental model (GMCM) for predicting blood glucose concentrations from the reference interstitial fluid (ISF) glucose concentrations was proposed before. It was used to compensate the delay error in ISF in order to improve the prediction accuracy and to facilitate the clinical application of continuous blood glucose monitoring. In this paper, many physiological parameters in GMCM reflecting delay and transport properties were discussed in details. The significance and influence of the parameters, diffusion distance (x), pressure gradient-driven transport ratio (RStarling), blood flow velocity (F), glucose capillary permeability (P), glucose diffusion coefficient (D), on the model were simulated and analysed. One group of blood (ISF) glucose values was set as input for the model with one varied parameter and other fixed parameters to predict ISF (blood) glucose concentrations. The results verified that F and P have much influence on the model and others play more minor roles. And some have positive influence on the model, like P, while others have a reverse effect, like F. All parameters can be modulated for different species or different physiological status during the model application.
ISSN:1310-2818
1314-3530