Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics

Amber Frick,1 Yuri Fedoriw,2 Kristy Richards,3,4 Blossom Damania,3,5 Bethany Parks,6 Oscar Suzuki,1 Cristina S Benton,1 Emmanuel Chan,1 Russell S Thomas,7 Tim Wiltshire1,3 1Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, 2Department of Pathology and Laborator...

Full description

Bibliographic Details
Main Authors: Frick A, Fedoriw Y, Richards K, Damania B, Parks B, Suzuki O, Benton CS, Chan E, Thomas RS, Wiltshire T
Format: Article
Language:English
Published: Dove Medical Press 2015-02-01
Series:Pharmacogenomics and Personalized Medicine
Online Access:http://www.dovepress.com/immune-cell-based-screening-assay-for-response-to-anticancer-agents-ap-peer-reviewed-article-PGPM
id doaj-4b4f361dc57c4a1e8b24ecadabcfded9
record_format Article
spelling doaj-4b4f361dc57c4a1e8b24ecadabcfded92020-11-24T23:03:37ZengDove Medical PressPharmacogenomics and Personalized Medicine1178-70662015-02-012015default819820643Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomicsFrick AFedoriw YRichards KDamania BParks BSuzuki OBenton CSChan EThomas RSWiltshire T Amber Frick,1 Yuri Fedoriw,2 Kristy Richards,3,4 Blossom Damania,3,5 Bethany Parks,6 Oscar Suzuki,1 Cristina S Benton,1 Emmanuel Chan,1 Russell S Thomas,7 Tim Wiltshire1,3 1Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, 2Department of Pathology and Laboratory Medicine, School of Medicine, 3Lineberger Comprehensive Cancer Center, School of Medicine, 4Department of Genetics, School of Medicine, 5Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; 6The Hamner Institutes for Health Sciences, 7Environmental Protection Agency, Research Triangle Park, NC, USA Background: Interpatient variability in immune and chemotherapeutic cytotoxic responses is likely due to complex genetic differences and is difficult to ascertain in humans. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at examining interstrain differences in viability on normal, noncancerous immune cells following chemotherapeutic cytotoxic insult. Drug effects were investigated by comparing selective chemotherapeutic agents, such as BEZ-235 and selumetinib, against conventional cytotoxic agents targeting multiple pathways, including doxorubicin and idarubicin. Methods: Splenocytes were isolated from 36 isogenic strains of mice using standard procedures. Of note, the splenocytes were not stimulated to avoid attributing responses to pathways involved with cellular stimulation rather than toxicity. Cells were incubated with compounds on a nine-point logarithmic dosing scale ranging from 15 nM to 100 µM (37°C, 5% CO2). At 4 hours posttreatment, cells were labeled with antibodies and physiological indicator dyes and fixed with 4% paraformaldehyde. Cellular phenotypes (eg, viability) were collected and analyzed using flow cytometry. Dose-response curves with response normalized to the zero dose as a function of log concentration were generated using GraphPad Prism 6. Results: Phenotypes were quantified using flow cytometry, yielding interstrain variation for measured endpoints in different immune cells. The flow cytometry assays produced over 16,000 data points that were used to generate dose-response curves. The more targeted agents, BEZ-235 and selumetinib, were less toxic to immune cells than the anthracycline agents. The calculated heritability for the viability of immune cells was higher with anthracyclines than the novel agents, making them better suited for downstream genetic analysis. Conclusion: Using this approach, we identify cell lines of variable sensitivity to chemotherapeutic agents and aim to identify robust, replicable endpoints of cellular response to drugs that provide the starting point for identifying candidate genes and cellular toxicity pathways for future validation in human studies. Keywords: immunomodulation, cytotoxicity, chemotherapy, precision medicinehttp://www.dovepress.com/immune-cell-based-screening-assay-for-response-to-anticancer-agents-ap-peer-reviewed-article-PGPM
collection DOAJ
language English
format Article
sources DOAJ
author Frick A
Fedoriw Y
Richards K
Damania B
Parks B
Suzuki O
Benton CS
Chan E
Thomas RS
Wiltshire T
spellingShingle Frick A
Fedoriw Y
Richards K
Damania B
Parks B
Suzuki O
Benton CS
Chan E
Thomas RS
Wiltshire T
Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics
Pharmacogenomics and Personalized Medicine
author_facet Frick A
Fedoriw Y
Richards K
Damania B
Parks B
Suzuki O
Benton CS
Chan E
Thomas RS
Wiltshire T
author_sort Frick A
title Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics
title_short Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics
title_full Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics
title_fullStr Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics
title_full_unstemmed Immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics
title_sort immune cell-based screening assay for response to anticancer agents: applications in pharmacogenomics
publisher Dove Medical Press
series Pharmacogenomics and Personalized Medicine
issn 1178-7066
publishDate 2015-02-01
description Amber Frick,1 Yuri Fedoriw,2 Kristy Richards,3,4 Blossom Damania,3,5 Bethany Parks,6 Oscar Suzuki,1 Cristina S Benton,1 Emmanuel Chan,1 Russell S Thomas,7 Tim Wiltshire1,3 1Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, 2Department of Pathology and Laboratory Medicine, School of Medicine, 3Lineberger Comprehensive Cancer Center, School of Medicine, 4Department of Genetics, School of Medicine, 5Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; 6The Hamner Institutes for Health Sciences, 7Environmental Protection Agency, Research Triangle Park, NC, USA Background: Interpatient variability in immune and chemotherapeutic cytotoxic responses is likely due to complex genetic differences and is difficult to ascertain in humans. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at examining interstrain differences in viability on normal, noncancerous immune cells following chemotherapeutic cytotoxic insult. Drug effects were investigated by comparing selective chemotherapeutic agents, such as BEZ-235 and selumetinib, against conventional cytotoxic agents targeting multiple pathways, including doxorubicin and idarubicin. Methods: Splenocytes were isolated from 36 isogenic strains of mice using standard procedures. Of note, the splenocytes were not stimulated to avoid attributing responses to pathways involved with cellular stimulation rather than toxicity. Cells were incubated with compounds on a nine-point logarithmic dosing scale ranging from 15 nM to 100 µM (37°C, 5% CO2). At 4 hours posttreatment, cells were labeled with antibodies and physiological indicator dyes and fixed with 4% paraformaldehyde. Cellular phenotypes (eg, viability) were collected and analyzed using flow cytometry. Dose-response curves with response normalized to the zero dose as a function of log concentration were generated using GraphPad Prism 6. Results: Phenotypes were quantified using flow cytometry, yielding interstrain variation for measured endpoints in different immune cells. The flow cytometry assays produced over 16,000 data points that were used to generate dose-response curves. The more targeted agents, BEZ-235 and selumetinib, were less toxic to immune cells than the anthracycline agents. The calculated heritability for the viability of immune cells was higher with anthracyclines than the novel agents, making them better suited for downstream genetic analysis. Conclusion: Using this approach, we identify cell lines of variable sensitivity to chemotherapeutic agents and aim to identify robust, replicable endpoints of cellular response to drugs that provide the starting point for identifying candidate genes and cellular toxicity pathways for future validation in human studies. Keywords: immunomodulation, cytotoxicity, chemotherapy, precision medicine
url http://www.dovepress.com/immune-cell-based-screening-assay-for-response-to-anticancer-agents-ap-peer-reviewed-article-PGPM
work_keys_str_mv AT fricka immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT fedoriwy immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT richardsk immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT damaniab immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT parksb immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT suzukio immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT bentoncs immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT chane immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT thomasrs immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
AT wiltshiret immunecellbasedscreeningassayforresponsetoanticanceragentsapplicationsinpharmacogenomics
_version_ 1725633033875226624