A Comparison of Markov Chain Random Field and Ordinary Kriging Methods for Calculating Soil Texture in a Mountainous Watershed, Northwest China

Accurate mapping the spatial distribution of different soil textures is important for eco-hydrological studies and water resource management. However, it is quite a challenge to map the soil texture in data scarce, hard to access mountainous watersheds. This paper compares a nonlinear method, the Ma...

Full description

Bibliographic Details
Main Authors: Jinlin Li, Lanhui Zhang, Chansheng He, Chen Zhao
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Sustainability
Subjects:
Online Access:http://www.mdpi.com/2071-1050/10/8/2819
Description
Summary:Accurate mapping the spatial distribution of different soil textures is important for eco-hydrological studies and water resource management. However, it is quite a challenge to map the soil texture in data scarce, hard to access mountainous watersheds. This paper compares a nonlinear method, the Markov chain random field (MCRF) with a classical linear method, ordinary kriging (OK) for calculating the soil texture at different search radiuses in the upstream region of the Heihe River Watershed. Results show that soil texture values that were calculated by the OK method tends to predict soil texture values within a certain range (sand (12.098~40.317), silt (47.847~71.231), and clay (12.781~19.420)) because of the smoothing effect, thus leading to greater accuracy in predicting the major soil texture type (silt loam). Nonetheless, the MCRF method considers the interclass relationships between sampling points, leading to greater accuracy in predicting minor types (loam and sandy loam). Meanwhile, the OK method performed best for all the types at the radius of 65 km influenced by the densities of all the sampling points, while the best performance of the MCRF method differs with radiuses as the largest densities varying for different soil types. For loam and sandy loam, the OK method ignored them, thus the MCRF method is more suitable in mountainous areas with high soil heterogeneity.
ISSN:2071-1050