Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **

The work objective is to study electrodynamic processes in the frequency-controlled drive (FCD) by the mathematical modeling method, in particular, in the two-current mode of the dynamic braking considering the 5th and 7th current harmonics of the induction motor (IM) stator. The features of forming...

Full description

Bibliographic Details
Main Authors: Nikolay F. Karnaukhov, Maxim N. Filimonov, Dmitry A. Statovoy, FelixVenegas V. Bonilla
Format: Article
Language:Russian
Published: Don State Technical University 2016-03-01
Series:Advanced Engineering Research
Subjects:
Online Access:https://www.vestnik-donstu.ru/jour/article/view/61
id doaj-4c353e348ac64ba681dedfa0a8f167b3
record_format Article
spelling doaj-4c353e348ac64ba681dedfa0a8f167b32021-10-02T18:37:06ZrusDon State Technical UniversityAdvanced Engineering Research2687-16532016-03-01161879810.12737/1826661Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **Nikolay F. Karnaukhov0Maxim N. Filimonov1Dmitry A. Statovoy2FelixVenegas V. Bonilla3Don State Technical UniversityDon State Technical UniversityDon State Technical UniversityDon State Technical UniversityThe work objective is to study electrodynamic processes in the frequency-controlled drive (FCD) by the mathematical modeling method, in particular, in the two-current mode of the dynamic braking considering the 5th and 7th current harmonics of the induction motor (IM) stator. The features of forming IM stator current low frequencies (0.2-15 Hz) by the autonomous voltage inverter (AVI) followed by the additional electricity loss in the FCD, and the appearance of torque ripple on the IM shaft causing jerkiness of the actuating mechanism (AM) of the production machine (PM) executive device (ED) in the low speed zone and complicating their locating in the prearranged position, are given. It is hard to implement the FCD scheduled deceleration without trajectory correction at the friction forces ambiguity in the ED AM mobility links and availability of the torque ripple on the IM shaft. To solve this problem, the authors offer, first, to use a spatial-vector pulse-width modulation (SV PWM) with m-fold submodulation of the carrier frequency (CF) and without submodulation in the IM braking mode. Secondly, it is reasonable to apply (momentarily in a low speed area) the principle of linearization by oscillation to reduce the K friction coefficient to a decreased value in the ED AM mobility links by the IM rotor microvibration due to the 5th and 7th harmonics of the stator current. Thus, the work on modeling FCD (in Matlab + Simulink software package) allows more accurately define the impact of the 5th and 7th harmonics of the IM stator current on the capability of the software implementation of the two-current mode of the FCD dynamic braking while reducing the total energy loss in the ED AM low-speed motion area. In addition, the applicability of the proposed solutions of the electric drives of mechatronic and robotic multipurpose systems with higher requirements for positioning in the basic AM - AVI circuits is confirmed.https://www.vestnik-donstu.ru/jour/article/view/61инвертор напряженияпространственно-векторная широтно-импульсная модуляция (пв шим)гармоники тока статорапульсирующий (колебательный) моментдвухтоковое динамическое торможениеподмодуляция несущей частотыэлектрические и тепловые потеривибрационная линеаризацияпозиционированиеvoltage inverterspatial-vector pulse-width modulation (sv pwm)stator current harmonicstorque rippletwo-current dynamic decelerationsubmodulation of carrier frequencyelectrical and heat losseslinearization by oscillationpositioning
collection DOAJ
language Russian
format Article
sources DOAJ
author Nikolay F. Karnaukhov
Maxim N. Filimonov
Dmitry A. Statovoy
FelixVenegas V. Bonilla
spellingShingle Nikolay F. Karnaukhov
Maxim N. Filimonov
Dmitry A. Statovoy
FelixVenegas V. Bonilla
Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **
Advanced Engineering Research
инвертор напряжения
пространственно-векторная широтно-импульсная модуляция (пв шим)
гармоники тока статора
пульсирующий (колебательный) момент
двухтоковое динамическое торможение
подмодуляция несущей частоты
электрические и тепловые потери
вибрационная линеаризация
позиционирование
voltage inverter
spatial-vector pulse-width modulation (sv pwm)
stator current harmonics
torque ripple
two-current dynamic deceleration
submodulation of carrier frequency
electrical and heat losses
linearization by oscillation
positioning
author_facet Nikolay F. Karnaukhov
Maxim N. Filimonov
Dmitry A. Statovoy
FelixVenegas V. Bonilla
author_sort Nikolay F. Karnaukhov
title Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **
title_short Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **
title_full Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **
title_fullStr Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **
title_full_unstemmed Braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **
title_sort braking mode simulation of induction motor of variable-frequency drive using stator current harmonics **
publisher Don State Technical University
series Advanced Engineering Research
issn 2687-1653
publishDate 2016-03-01
description The work objective is to study electrodynamic processes in the frequency-controlled drive (FCD) by the mathematical modeling method, in particular, in the two-current mode of the dynamic braking considering the 5th and 7th current harmonics of the induction motor (IM) stator. The features of forming IM stator current low frequencies (0.2-15 Hz) by the autonomous voltage inverter (AVI) followed by the additional electricity loss in the FCD, and the appearance of torque ripple on the IM shaft causing jerkiness of the actuating mechanism (AM) of the production machine (PM) executive device (ED) in the low speed zone and complicating their locating in the prearranged position, are given. It is hard to implement the FCD scheduled deceleration without trajectory correction at the friction forces ambiguity in the ED AM mobility links and availability of the torque ripple on the IM shaft. To solve this problem, the authors offer, first, to use a spatial-vector pulse-width modulation (SV PWM) with m-fold submodulation of the carrier frequency (CF) and without submodulation in the IM braking mode. Secondly, it is reasonable to apply (momentarily in a low speed area) the principle of linearization by oscillation to reduce the K friction coefficient to a decreased value in the ED AM mobility links by the IM rotor microvibration due to the 5th and 7th harmonics of the stator current. Thus, the work on modeling FCD (in Matlab + Simulink software package) allows more accurately define the impact of the 5th and 7th harmonics of the IM stator current on the capability of the software implementation of the two-current mode of the FCD dynamic braking while reducing the total energy loss in the ED AM low-speed motion area. In addition, the applicability of the proposed solutions of the electric drives of mechatronic and robotic multipurpose systems with higher requirements for positioning in the basic AM - AVI circuits is confirmed.
topic инвертор напряжения
пространственно-векторная широтно-импульсная модуляция (пв шим)
гармоники тока статора
пульсирующий (колебательный) момент
двухтоковое динамическое торможение
подмодуляция несущей частоты
электрические и тепловые потери
вибрационная линеаризация
позиционирование
voltage inverter
spatial-vector pulse-width modulation (sv pwm)
stator current harmonics
torque ripple
two-current dynamic deceleration
submodulation of carrier frequency
electrical and heat losses
linearization by oscillation
positioning
url https://www.vestnik-donstu.ru/jour/article/view/61
work_keys_str_mv AT nikolayfkarnaukhov brakingmodesimulationofinductionmotorofvariablefrequencydriveusingstatorcurrentharmonics
AT maximnfilimonov brakingmodesimulationofinductionmotorofvariablefrequencydriveusingstatorcurrentharmonics
AT dmitryastatovoy brakingmodesimulationofinductionmotorofvariablefrequencydriveusingstatorcurrentharmonics
AT felixvenegasvbonilla brakingmodesimulationofinductionmotorofvariablefrequencydriveusingstatorcurrentharmonics
_version_ 1716848865216299008