Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions
In this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems $ \begin{equation*} \left\{\begin{array}{l} -M_{1}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\eta(x)-\eta(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Ome...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2021-09-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | http://www.aimspress.com/article/doi/10.3934/math.2021801?viewType=HTML |
id |
doaj-4c68d7a3f4e84464b533ff72c1a56f43 |
---|---|
record_format |
Article |
spelling |
doaj-4c68d7a3f4e84464b533ff72c1a56f432021-10-11T01:22:07ZengAIMS PressAIMS Mathematics2473-69882021-09-01612137971382310.3934/math.2021801Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutionsWeichun Bu0Tianqing An1Guoju Ye2Yating Guo31. College of Science, Hohai University, Nanjing 210098, China 2. College of Science, Zhongyuan University Of Technology, Zhengzhou 450007, China1. College of Science, Hohai University, Nanjing 210098, China1. College of Science, Hohai University, Nanjing 210098, China1. College of Science, Hohai University, Nanjing 210098, ChinaIn this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems $ \begin{equation*} \left\{\begin{array}{l} -M_{1}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\eta(x)-\eta(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\eta|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\eta-|\eta|^{\overline{p}(x)}\eta\right)\\ \; \; \; = \lambda F_{\eta}(x, \eta, \xi)+\mu G_{\eta}(x, \eta, \xi), \; \; x \in \Omega, \\ -M_{2}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\xi(x)-\xi(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\xi|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\xi-|\xi|^{\overline{p}(x)}\xi\right)\\ \; \; \; = \lambda F_{\xi}(x, \eta, \xi)+\mu G_{\xi}(x, \eta, \xi), \; \; x \in \Omega, \\ \; \eta = \xi = 0, \; \; x \in \mathbb{R}^{N}\backslash \Omega, \end{array} \right. \end{equation*} $ where $ M_{1}(t), M_{2}(t) $ are the models of Kirchhoff coefficient, $ \Omega $ is a bounded smooth domain in $ \mathbb R^{N} $, $ (-\Delta)_{p(\cdot)}^{s(\cdot)} $ is a fractional Laplace operator, $ \lambda, \mu $ are two real parameters, $ F, G $ are continuous differentiable functions, whose partial derivatives are $ F_{\eta}, F_{\xi}, G_{\eta}, G_{\xi} $. With the help of direct variational methods, we study the existence of solutions for nonlocal fractional $ p(\cdot) $-Kirchhoff systems with variable-order, and obtain at least two and three weak solutions based on Bonanno's and Ricceri's critical points theorem. The outstanding feature is the case that the Palais-Smale condition is not requested. The major difficulties and innovations are nonlocal Kirchhoff functions with the presence of the Laplace operator involving two variable parameters.http://www.aimspress.com/article/doi/10.3934/math.2021801?viewType=HTMLkirchhoff systemsp(⋅)-laplace operatorvariational methodsbonanno's critical points theoremricceri's critical points theorem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Weichun Bu Tianqing An Guoju Ye Yating Guo |
spellingShingle |
Weichun Bu Tianqing An Guoju Ye Yating Guo Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions AIMS Mathematics kirchhoff systems p(⋅)-laplace operator variational methods bonanno's critical points theorem ricceri's critical points theorem |
author_facet |
Weichun Bu Tianqing An Guoju Ye Yating Guo |
author_sort |
Weichun Bu |
title |
Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions |
title_short |
Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions |
title_full |
Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions |
title_fullStr |
Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions |
title_full_unstemmed |
Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions |
title_sort |
nonlocal fractional p(⋅)-kirchhoff systems with variable-order: two and three solutions |
publisher |
AIMS Press |
series |
AIMS Mathematics |
issn |
2473-6988 |
publishDate |
2021-09-01 |
description |
In this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems
$ \begin{equation*} \left\{\begin{array}{l} -M_{1}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\eta(x)-\eta(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\eta|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\eta-|\eta|^{\overline{p}(x)}\eta\right)\\ \; \; \; = \lambda F_{\eta}(x, \eta, \xi)+\mu G_{\eta}(x, \eta, \xi), \; \; x \in \Omega, \\ -M_{2}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\xi(x)-\xi(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\xi|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\xi-|\xi|^{\overline{p}(x)}\xi\right)\\ \; \; \; = \lambda F_{\xi}(x, \eta, \xi)+\mu G_{\xi}(x, \eta, \xi), \; \; x \in \Omega, \\ \; \eta = \xi = 0, \; \; x \in \mathbb{R}^{N}\backslash \Omega, \end{array} \right. \end{equation*} $
where $ M_{1}(t), M_{2}(t) $ are the models of Kirchhoff coefficient, $ \Omega $ is a bounded smooth domain in $ \mathbb R^{N} $, $ (-\Delta)_{p(\cdot)}^{s(\cdot)} $ is a fractional Laplace operator, $ \lambda, \mu $ are two real parameters, $ F, G $ are continuous differentiable functions, whose partial derivatives are $ F_{\eta}, F_{\xi}, G_{\eta}, G_{\xi} $. With the help of direct variational methods, we study the existence of solutions for nonlocal fractional $ p(\cdot) $-Kirchhoff systems with variable-order, and obtain at least two and three weak solutions based on Bonanno's and Ricceri's critical points theorem. The outstanding feature is the case that the Palais-Smale condition is not requested. The major difficulties and innovations are nonlocal Kirchhoff functions with the presence of the Laplace operator involving two variable parameters. |
topic |
kirchhoff systems p(⋅)-laplace operator variational methods bonanno's critical points theorem ricceri's critical points theorem |
url |
http://www.aimspress.com/article/doi/10.3934/math.2021801?viewType=HTML |
work_keys_str_mv |
AT weichunbu nonlocalfractionalpkirchhoffsystemswithvariableordertwoandthreesolutions AT tianqingan nonlocalfractionalpkirchhoffsystemswithvariableordertwoandthreesolutions AT guojuye nonlocalfractionalpkirchhoffsystemswithvariableordertwoandthreesolutions AT yatingguo nonlocalfractionalpkirchhoffsystemswithvariableordertwoandthreesolutions |
_version_ |
1716829030036013056 |