Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions

In this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems $ \begin{equation*} \left\{\begin{array}{l} -M_{1}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\eta(x)-\eta(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Ome...

Full description

Bibliographic Details
Main Authors: Weichun Bu, Tianqing An, Guoju Ye, Yating Guo
Format: Article
Language:English
Published: AIMS Press 2021-09-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/math.2021801?viewType=HTML
id doaj-4c68d7a3f4e84464b533ff72c1a56f43
record_format Article
spelling doaj-4c68d7a3f4e84464b533ff72c1a56f432021-10-11T01:22:07ZengAIMS PressAIMS Mathematics2473-69882021-09-01612137971382310.3934/math.2021801Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutionsWeichun Bu0Tianqing An1Guoju Ye2Yating Guo31. College of Science, Hohai University, Nanjing 210098, China 2. College of Science, Zhongyuan University Of Technology, Zhengzhou 450007, China1. College of Science, Hohai University, Nanjing 210098, China1. College of Science, Hohai University, Nanjing 210098, China1. College of Science, Hohai University, Nanjing 210098, ChinaIn this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems $ \begin{equation*} \left\{\begin{array}{l} -M_{1}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\eta(x)-\eta(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\eta|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\eta-|\eta|^{\overline{p}(x)}\eta\right)\\ \; \; \; = \lambda F_{\eta}(x, \eta, \xi)+\mu G_{\eta}(x, \eta, \xi), \; \; x \in \Omega, \\ -M_{2}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\xi(x)-\xi(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\xi|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\xi-|\xi|^{\overline{p}(x)}\xi\right)\\ \; \; \; = \lambda F_{\xi}(x, \eta, \xi)+\mu G_{\xi}(x, \eta, \xi), \; \; x \in \Omega, \\ \; \eta = \xi = 0, \; \; x \in \mathbb{R}^{N}\backslash \Omega, \end{array} \right. \end{equation*} $ where $ M_{1}(t), M_{2}(t) $ are the models of Kirchhoff coefficient, $ \Omega $ is a bounded smooth domain in $ \mathbb R^{N} $, $ (-\Delta)_{p(\cdot)}^{s(\cdot)} $ is a fractional Laplace operator, $ \lambda, \mu $ are two real parameters, $ F, G $ are continuous differentiable functions, whose partial derivatives are $ F_{\eta}, F_{\xi}, G_{\eta}, G_{\xi} $. With the help of direct variational methods, we study the existence of solutions for nonlocal fractional $ p(\cdot) $-Kirchhoff systems with variable-order, and obtain at least two and three weak solutions based on Bonanno's and Ricceri's critical points theorem. The outstanding feature is the case that the Palais-Smale condition is not requested. The major difficulties and innovations are nonlocal Kirchhoff functions with the presence of the Laplace operator involving two variable parameters.http://www.aimspress.com/article/doi/10.3934/math.2021801?viewType=HTMLkirchhoff systemsp(⋅)-laplace operatorvariational methodsbonanno's critical points theoremricceri's critical points theorem
collection DOAJ
language English
format Article
sources DOAJ
author Weichun Bu
Tianqing An
Guoju Ye
Yating Guo
spellingShingle Weichun Bu
Tianqing An
Guoju Ye
Yating Guo
Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions
AIMS Mathematics
kirchhoff systems
p(⋅)-laplace operator
variational methods
bonanno's critical points theorem
ricceri's critical points theorem
author_facet Weichun Bu
Tianqing An
Guoju Ye
Yating Guo
author_sort Weichun Bu
title Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions
title_short Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions
title_full Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions
title_fullStr Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions
title_full_unstemmed Nonlocal fractional p(⋅)-Kirchhoff systems with variable-order: Two and three solutions
title_sort nonlocal fractional p(⋅)-kirchhoff systems with variable-order: two and three solutions
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2021-09-01
description In this article, we consider the following nonlocal fractional Kirchhoff-type elliptic systems $ \begin{equation*} \left\{\begin{array}{l} -M_{1}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\eta(x)-\eta(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\eta|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\eta-|\eta|^{\overline{p}(x)}\eta\right)\\ \; \; \; = \lambda F_{\eta}(x, \eta, \xi)+\mu G_{\eta}(x, \eta, \xi), \; \; x \in \Omega, \\ -M_{2}\left(\int_{\mathbb{R}^{N}\times\mathbb{R}^{N}}\frac{|\xi(x)-\xi(y)|^{^{p(x, y)}}}{p(x, y)|x-y|^{N+p(x, y)s(x, y)}} \ \ \ \ \ dxdy +\int_{\Omega}\frac{|\xi|^{\overline{p}(x)}}{\overline{p}(x)}dx\right) \left(\Delta_{p(\cdot)}^{s(\cdot)}\xi-|\xi|^{\overline{p}(x)}\xi\right)\\ \; \; \; = \lambda F_{\xi}(x, \eta, \xi)+\mu G_{\xi}(x, \eta, \xi), \; \; x \in \Omega, \\ \; \eta = \xi = 0, \; \; x \in \mathbb{R}^{N}\backslash \Omega, \end{array} \right. \end{equation*} $ where $ M_{1}(t), M_{2}(t) $ are the models of Kirchhoff coefficient, $ \Omega $ is a bounded smooth domain in $ \mathbb R^{N} $, $ (-\Delta)_{p(\cdot)}^{s(\cdot)} $ is a fractional Laplace operator, $ \lambda, \mu $ are two real parameters, $ F, G $ are continuous differentiable functions, whose partial derivatives are $ F_{\eta}, F_{\xi}, G_{\eta}, G_{\xi} $. With the help of direct variational methods, we study the existence of solutions for nonlocal fractional $ p(\cdot) $-Kirchhoff systems with variable-order, and obtain at least two and three weak solutions based on Bonanno's and Ricceri's critical points theorem. The outstanding feature is the case that the Palais-Smale condition is not requested. The major difficulties and innovations are nonlocal Kirchhoff functions with the presence of the Laplace operator involving two variable parameters.
topic kirchhoff systems
p(⋅)-laplace operator
variational methods
bonanno's critical points theorem
ricceri's critical points theorem
url http://www.aimspress.com/article/doi/10.3934/math.2021801?viewType=HTML
work_keys_str_mv AT weichunbu nonlocalfractionalpkirchhoffsystemswithvariableordertwoandthreesolutions
AT tianqingan nonlocalfractionalpkirchhoffsystemswithvariableordertwoandthreesolutions
AT guojuye nonlocalfractionalpkirchhoffsystemswithvariableordertwoandthreesolutions
AT yatingguo nonlocalfractionalpkirchhoffsystemswithvariableordertwoandthreesolutions
_version_ 1716829030036013056