Thermal Management and Modeling of Forced Convection and Entropy Generation in a Vented Cavity by Simultaneous Use of a Curved Porous Layer and Magnetic Field

The effects of using a partly curved porous layer on the thermal management and entropy generation features are studied in a ventilated cavity filled with hybrid nanofluid under the effects of inclined magnetic field by using finite volume method. This study is performed for the range of pertinent p...

Full description

Bibliographic Details
Main Authors: Fatih Selimefendigil, Hakan F. Öztop
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/2/152
id doaj-4c6fec15bf3a4c85b5bee116f8b55ab8
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Fatih Selimefendigil
Hakan F. Öztop
spellingShingle Fatih Selimefendigil
Hakan F. Öztop
Thermal Management and Modeling of Forced Convection and Entropy Generation in a Vented Cavity by Simultaneous Use of a Curved Porous Layer and Magnetic Field
Entropy
curved porous layer
vented cavity
convection
finite volume method
nanofluid
entropy generation
author_facet Fatih Selimefendigil
Hakan F. Öztop
author_sort Fatih Selimefendigil
title Thermal Management and Modeling of Forced Convection and Entropy Generation in a Vented Cavity by Simultaneous Use of a Curved Porous Layer and Magnetic Field
title_short Thermal Management and Modeling of Forced Convection and Entropy Generation in a Vented Cavity by Simultaneous Use of a Curved Porous Layer and Magnetic Field
title_full Thermal Management and Modeling of Forced Convection and Entropy Generation in a Vented Cavity by Simultaneous Use of a Curved Porous Layer and Magnetic Field
title_fullStr Thermal Management and Modeling of Forced Convection and Entropy Generation in a Vented Cavity by Simultaneous Use of a Curved Porous Layer and Magnetic Field
title_full_unstemmed Thermal Management and Modeling of Forced Convection and Entropy Generation in a Vented Cavity by Simultaneous Use of a Curved Porous Layer and Magnetic Field
title_sort thermal management and modeling of forced convection and entropy generation in a vented cavity by simultaneous use of a curved porous layer and magnetic field
publisher MDPI AG
series Entropy
issn 1099-4300
publishDate 2021-01-01
description The effects of using a partly curved porous layer on the thermal management and entropy generation features are studied in a ventilated cavity filled with hybrid nanofluid under the effects of inclined magnetic field by using finite volume method. This study is performed for the range of pertinent parameters of Reynolds number (<inline-formula><math display="inline"><semantics><mrow><mn>100</mn><mo>≤</mo><mi>Re</mi><mo>≤</mo><mn>1000</mn></mrow></semantics></math></inline-formula>), magnetic field strength (<inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>Ha</mi><mo>≤</mo><mn>80</mn></mrow></semantics></math></inline-formula>), permeability of porous region (<inline-formula><math display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo>≤</mo><mi>Da</mi><mo>≤</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>), porous layer height (<inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>15</mn><mspace width="0.166667em"></mspace><mi>H</mi><mo>≤</mo><msub><mi>t</mi><mi>p</mi></msub><mo>≤</mo><mn>0</mn><mo>.</mo><mn>45</mn><mi>H</mi></mrow></semantics></math></inline-formula>), porous layer position (<inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>25</mn><mi>H</mi><mo>≤</mo><msub><mi>y</mi><mi>p</mi></msub><mo>≤</mo><mn>0</mn><mo>.</mo><mn>45</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula>), and curvature size (<inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula>). The magnetic field reduces the vortex size, while the average Nusselt number of hot walls increases for Ha number above 20 and highest enhancement is 47% for left vertical wall. The variation in the average Nu with permeability of the layer is about 12.5% and 21% for left and right vertical walls, respectively, while these amounts are 12.5% and 32.5% when the location of the porous layer changes. The entropy generation increases with Hartmann number above 20, while there is 22% increase in the entropy generation for the case at the highest magnetic field. The porous layer height reduced the entropy generation for domain above it and it give the highest contribution to the overall entropy generation. When location of the curved porous layer is varied, the highest variation of entropy generation is attained for the domain below it while the lowest value is obtained at <inline-formula><math display="inline"><semantics><mrow><msub><mi>y</mi><mi>p</mi></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula>. When the size of elliptic curvature is varied, the overall entropy generation decreases from b=0 to <inline-formula><math display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula> by about 10% and then increases by 5% from <inline-formula><math display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula> to <inline-formula><math display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula>.
topic curved porous layer
vented cavity
convection
finite volume method
nanofluid
entropy generation
url https://www.mdpi.com/1099-4300/23/2/152
work_keys_str_mv AT fatihselimefendigil thermalmanagementandmodelingofforcedconvectionandentropygenerationinaventedcavitybysimultaneoususeofacurvedporouslayerandmagneticfield
AT hakanfoztop thermalmanagementandmodelingofforcedconvectionandentropygenerationinaventedcavitybysimultaneoususeofacurvedporouslayerandmagneticfield
_version_ 1724322044761341952
spelling doaj-4c6fec15bf3a4c85b5bee116f8b55ab82021-01-27T00:05:47ZengMDPI AGEntropy1099-43002021-01-012315215210.3390/e23020152Thermal Management and Modeling of Forced Convection and Entropy Generation in a Vented Cavity by Simultaneous Use of a Curved Porous Layer and Magnetic FieldFatih Selimefendigil0Hakan F. Öztop1Department of Mechanical Engineering, Celal Bayar University, Manisa 45140, TurkeyDepartment of Mechanical Engineering, Technology Faculty, Fırat University, Elazığ 23119, TurkeyThe effects of using a partly curved porous layer on the thermal management and entropy generation features are studied in a ventilated cavity filled with hybrid nanofluid under the effects of inclined magnetic field by using finite volume method. This study is performed for the range of pertinent parameters of Reynolds number (<inline-formula><math display="inline"><semantics><mrow><mn>100</mn><mo>≤</mo><mi>Re</mi><mo>≤</mo><mn>1000</mn></mrow></semantics></math></inline-formula>), magnetic field strength (<inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>Ha</mi><mo>≤</mo><mn>80</mn></mrow></semantics></math></inline-formula>), permeability of porous region (<inline-formula><math display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo>≤</mo><mi>Da</mi><mo>≤</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula>), porous layer height (<inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>15</mn><mspace width="0.166667em"></mspace><mi>H</mi><mo>≤</mo><msub><mi>t</mi><mi>p</mi></msub><mo>≤</mo><mn>0</mn><mo>.</mo><mn>45</mn><mi>H</mi></mrow></semantics></math></inline-formula>), porous layer position (<inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>.</mo><mn>25</mn><mi>H</mi><mo>≤</mo><msub><mi>y</mi><mi>p</mi></msub><mo>≤</mo><mn>0</mn><mo>.</mo><mn>45</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula>), and curvature size (<inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>b</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula>). The magnetic field reduces the vortex size, while the average Nusselt number of hot walls increases for Ha number above 20 and highest enhancement is 47% for left vertical wall. The variation in the average Nu with permeability of the layer is about 12.5% and 21% for left and right vertical walls, respectively, while these amounts are 12.5% and 32.5% when the location of the porous layer changes. The entropy generation increases with Hartmann number above 20, while there is 22% increase in the entropy generation for the case at the highest magnetic field. The porous layer height reduced the entropy generation for domain above it and it give the highest contribution to the overall entropy generation. When location of the curved porous layer is varied, the highest variation of entropy generation is attained for the domain below it while the lowest value is obtained at <inline-formula><math display="inline"><semantics><mrow><msub><mi>y</mi><mi>p</mi></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula>. When the size of elliptic curvature is varied, the overall entropy generation decreases from b=0 to <inline-formula><math display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula> by about 10% and then increases by 5% from <inline-formula><math display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula> to <inline-formula><math display="inline"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mspace width="0.166667em"></mspace><mi>H</mi></mrow></semantics></math></inline-formula>.https://www.mdpi.com/1099-4300/23/2/152curved porous layervented cavityconvectionfinite volume methodnanofluidentropy generation