Summary: | Abstract Background N-Acetyl glucosamine (GlcNAc) and N-Acetyl chitooligosaccharides (N-Acetyl COSs) exhibit many biological activities, and have been widely used in the pharmaceutical, agriculture, food, and chemical industries. Particularly, higher N-Acetyl COSs with degree of polymerization from 4 to 7 ((GlcNAc)4–(GlcNAc)7) show good antitumor and antimicrobial activity, as well as possessing strong stimulating activity toward natural killer cells. Thus, it is of great significance to discover a β-N-acetyl glucosaminidase (NAGase) that can not only produce GlcNAc, but also synthesize N-Acetyl COSs. Results The gene encoding the novel β-N-acetyl glucosaminidase, designated CmNAGase, was cloned from Chitinolyticbacter meiyuanensis SYBC-H1. The deduced amino acid sequence of CmNAGase contains a glycoside hydrolase family 20 catalytic module that shows low identity (12–35%) with the corresponding domain of most well-characterized NAGases. The CmNAGase gene was highly expressed with an active form in Escherichia coli BL21 (DE3) cells. The specific activity of purified CmNAGase toward p-nitrophenyl-N-acetyl glucosaminide (pNP-GlcNAc) was 4878.6 U/mg of protein. CmNAGase had a molecular mass of 92 kDa, and its optimum activity was at pH 5.4 and 40 °C. The V max, K m, K cat, and K cat/K m of CmNAGase for pNP-GlcNAc were 16,666.67 μmol min−1 mg−1, 0.50 μmol mL−1, 25,555.56 s−1, and 51,111.12 mL μmol−1 s−1, respectively. Analysis of the hydrolysis products of N-Acetyl COSs and colloidal chitin revealed that CmNAGase is a typical exo-acting NAGase. Particularly, CmNAGase can synthesize higher N-Acetyl COSs ((GlcNAc)3–(GlcNAc)7) from (GlcNAc)2–(GlcNAc)6, respectively, showed that it possesses transglycosylation activity. In addition, CmNAGase also has reverse hydrolysis activity toward GlcNAc, synthesizing various linked GlcNAc dimers. Conclusions The observations recorded in this study that CmNAGase is a novel NAGase with exo-acting, transglycosylation, and reverse hydrolysis activities, suggest a possible application in the production of GlcNAc or higher N-Acetyl COSs.
|