Ultrasound Imaging of the Trunk Muscles in Acute Stroke Patients and Relations With Balance Scales

Objective To examine the correlation between ultrasonographic trunk muscle parameters and balance scales in mild acute stroke patients. Methods A total of 55 stroke patients with hemiparesis and motor power grade ≥4 in the manual motor test were included. The Scale for the Assessment and Rating of A...

Full description

Bibliographic Details
Main Authors: Yunho Kim, Jeeyoung Kim, Heesung Nam, Hyun Dong Kim, Mi Ja Eom, Sang Hoon Jung, Nami Han
Format: Article
Language:English
Published: Korean Academy of Rehabilitation Medicine 2020-08-01
Series:Annals of Rehabilitation Medicine
Subjects:
Online Access:http://www.e-arm.org/upload/pdf/arm-19125.pdf
Description
Summary:Objective To examine the correlation between ultrasonographic trunk muscle parameters and balance scales in mild acute stroke patients. Methods A total of 55 stroke patients with hemiparesis and motor power grade ≥4 in the manual motor test were included. The Scale for the Assessment and Rating of Ataxia (SARA), Berg Balance Scale (BBS), Timed Up and Go Test (TUG), and Trunk Control Test (TCT) were used to evaluate patient balance function. Ultrasonographic parameters were measured on both non-paretic and paretic sides of the rectus abdominis, external oblique, internal oblique, transversus abdominis, and erector spinae muscles. Resting thickness and contraction thickness were measured in all muscles, and contractility and contractility ratio were calculated based on measured thicknesses. The differences between paretic and non-paretic muscle parameters, and the correlation between ultrasonographic parameters and balance scales were analyzed. Stroke patients were divided into two groups according to their fall risk. Ultrasonographic measurements between the two groups were compared. Results All muscles’ contraction thickness and contractility were significantly different between paretic and non-paretic sides (p<0.001). Contractility ratios of all trunk muscles showed a significant correlation with SARA, BBS, TUG, and TCT (p<0.05). Contractility ratios of all muscles were significantly different between high- and low-risk fall groups (p<0.05). Conclusion The contractility ratio in stroke patients reflects their balance disturbance and fall risk and it may serve as a new parameter for ultrasound imaging of trunk muscles.
ISSN:2234-0645
2234-0653