Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes
Abstract In this paper, we prove some basic properties of the discrete Muckenhoupt class A p $\mathcal{A}^{p}$ and the discrete Gehring class G q $\mathcal{G}^{q}$ . These properties involve the self-improving properties and the fundamental transitions and inclusions relations between the two classe...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-01-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13662-020-03105-x |
id |
doaj-4cca0b7560854c03a3005e9c6c6508e6 |
---|---|
record_format |
Article |
spelling |
doaj-4cca0b7560854c03a3005e9c6c6508e62021-01-10T12:52:41ZengSpringerOpenAdvances in Difference Equations1687-18472021-01-012021112210.1186/s13662-020-03105-xSome basic properties and fundamental relations for discrete Muckenhoupt and Gehring classesS. H. Saker0S. S. Rabie1Jehad Alzabut2D. O’Regan3R. P. Agarwal4Mathematics Division, Faculty of Advanced Basic Sciences, Galala UniversityDepartment of Mathematics, Faculty of Science, Mansoura UniversityDepartment of Mathematics and General Sciences, Prince Sultan UniversitySchool of Mathematics, Statistics and Applied Mathematics, National University of IrelandDepartment of Mathematics, Texas A & M University-KingsvilleAbstract In this paper, we prove some basic properties of the discrete Muckenhoupt class A p $\mathcal{A}^{p}$ and the discrete Gehring class G q $\mathcal{G}^{q}$ . These properties involve the self-improving properties and the fundamental transitions and inclusions relations between the two classes.https://doi.org/10.1186/s13662-020-03105-xDiscrete Gehring’s classDiscrete Muchenhoupt’s classSelf-improving properties |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. H. Saker S. S. Rabie Jehad Alzabut D. O’Regan R. P. Agarwal |
spellingShingle |
S. H. Saker S. S. Rabie Jehad Alzabut D. O’Regan R. P. Agarwal Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes Advances in Difference Equations Discrete Gehring’s class Discrete Muchenhoupt’s class Self-improving properties |
author_facet |
S. H. Saker S. S. Rabie Jehad Alzabut D. O’Regan R. P. Agarwal |
author_sort |
S. H. Saker |
title |
Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes |
title_short |
Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes |
title_full |
Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes |
title_fullStr |
Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes |
title_full_unstemmed |
Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes |
title_sort |
some basic properties and fundamental relations for discrete muckenhoupt and gehring classes |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2021-01-01 |
description |
Abstract In this paper, we prove some basic properties of the discrete Muckenhoupt class A p $\mathcal{A}^{p}$ and the discrete Gehring class G q $\mathcal{G}^{q}$ . These properties involve the self-improving properties and the fundamental transitions and inclusions relations between the two classes. |
topic |
Discrete Gehring’s class Discrete Muchenhoupt’s class Self-improving properties |
url |
https://doi.org/10.1186/s13662-020-03105-x |
work_keys_str_mv |
AT shsaker somebasicpropertiesandfundamentalrelationsfordiscretemuckenhouptandgehringclasses AT ssrabie somebasicpropertiesandfundamentalrelationsfordiscretemuckenhouptandgehringclasses AT jehadalzabut somebasicpropertiesandfundamentalrelationsfordiscretemuckenhouptandgehringclasses AT doregan somebasicpropertiesandfundamentalrelationsfordiscretemuckenhouptandgehringclasses AT rpagarwal somebasicpropertiesandfundamentalrelationsfordiscretemuckenhouptandgehringclasses |
_version_ |
1724342085074550784 |