Modified Mittag-Leffler Functions with Applications in Complex Formulae for Fractional Calculus
Mittag-Leffler functions and their variations are a popular topic of study at the present time, mostly due to their applications in fractional calculus and fractional differential equations. Here we propose a modification of the usual Mittag-Leffler functions of one, two, or three parameters, which...
Main Authors: | Arran Fernandez, Iftikhar Husain |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/4/3/45 |
Similar Items
-
Relations between fractional models with three-parameter Mittag-Leffler kernels
by: Arran Fernandez, et al.
Published: (2020-04-01) -
Sinc Based Inverse Laplace Transforms, Mittag-Leffler Functions and Their Approximation for Fractional Calculus
by: Gerd Baumann
Published: (2021-05-01) -
A basic study of a fractional integral operator with extended Mittag-Leffler kernel
by: Gauhar Rahman, et al.
Published: (2021-09-01) -
On a New Class of Fractional Difference-Sum Operators with Discrete Mittag-Leffler Kernels
by: Thabet Abdeljawad, et al.
Published: (2019-08-01) -
Mittag-Leffler function for discrete fractional modelling
by: Guo-Cheng Wu, et al.
Published: (2016-01-01)