Catalytic Activities of Multimeric G-Quadruplex DNAzymes

G-quadruplex DNAzymes are short DNA aptamers with repeating G4 quartets bound in a non-covalent complex with hemin. These G4/Hemin structures exhibit versatile peroxidase-like catalytic activity with a wide range of potential applications in biosensing and biotechnology. Current efforts are aimed at...

Full description

Bibliographic Details
Main Authors: Raphael I. Adeoye, Dunsin S. Osalaye, Theresia K. Ralebitso-Senior, Amanda Boddis, Amanda J. Reid, Amos A. Fatokun, Andrew K. Powell, Sylvia O. Malomo, Femi J. Olorunniji
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/9/7/613
Description
Summary:G-quadruplex DNAzymes are short DNA aptamers with repeating G4 quartets bound in a non-covalent complex with hemin. These G4/Hemin structures exhibit versatile peroxidase-like catalytic activity with a wide range of potential applications in biosensing and biotechnology. Current efforts are aimed at gaining a better understanding of the molecular mechanism of DNAzyme catalysis as well as devising strategies for improving their catalytic efficiency. Multimerisation of discrete units of G-quadruplexes to form multivalent DNAzyes is an emerging design strategy aimed at enhancing the peroxidase activities of DNAzymes. While this approach holds promise of generating more active multivalent G-quadruplex DNAzymes, few examples have been studied and it is not clear what factors determine the enhancement of catalytic activities of multimeric DNAzymes. In this study, we report the design and characterisation of multimers of five G-quadruplex sequences (AS1411, Bcl-2, c-MYC, PS5.M and PS2.M). Our results show that multimerisation of G-quadruplexes that form parallel structure (AS1411, Bcl-2, c-MYC) leads to significant rate enhancements characteristic of cooperative and/or synergistic interactions between the monomeric units. In contrast, multimerisation of DNA sequences that form non-parallel structures (PS5.M and PS2.M) did not exhibit similar levels of synergistic increase in activities. These results show that design of multivalent G4/Hemin structures could lead to a new set of versatile and efficient DNAzymes with enhanced capacity to catalyse peroxidase-mimic reactions.
ISSN:2073-4344