Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study

Objectives: Lateral geniculate nucleus (LGN) volume is reduced after optic neuritis (ON) in neuromyelitis optica spectrum disorders (NMOSD). We aimed at a longitudinal assessment of LGN volume in NMOSD. Methods: Twenty-nine patients with aquaporin 4-IgG seropositive NMOSD (age: 47.8 ± 14.6 years (y)...

Full description

Bibliographic Details
Main Authors: Athina Papadopoulou, Frederike C. Oertel, Claudia Chien, Joseph Kuchling, Hanna G. Zimmermann, Nadja Siebert, Seyedamirhosein Motamedi, Marcus D' Souza, Susanna Asseyer, Judith Bellmann-Strobl, Klemens Ruprecht, M. Mallar Chakravarty, Michael Scheel, Stefano Magon, Jens Wuerfel, Friedemann Paul, Alexander U. Brandt
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:NeuroImage: Clinical
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213158221000528
id doaj-4d92d201ac8b4ad5a5a1cd5383b5c2d1
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Athina Papadopoulou
Frederike C. Oertel
Claudia Chien
Joseph Kuchling
Hanna G. Zimmermann
Nadja Siebert
Seyedamirhosein Motamedi
Marcus D' Souza
Susanna Asseyer
Judith Bellmann-Strobl
Klemens Ruprecht
M. Mallar Chakravarty
Michael Scheel
Stefano Magon
Jens Wuerfel
Friedemann Paul
Alexander U. Brandt
spellingShingle Athina Papadopoulou
Frederike C. Oertel
Claudia Chien
Joseph Kuchling
Hanna G. Zimmermann
Nadja Siebert
Seyedamirhosein Motamedi
Marcus D' Souza
Susanna Asseyer
Judith Bellmann-Strobl
Klemens Ruprecht
M. Mallar Chakravarty
Michael Scheel
Stefano Magon
Jens Wuerfel
Friedemann Paul
Alexander U. Brandt
Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study
NeuroImage: Clinical
Thalamus
Neurodegeneration
NMOSD
Anterograde degeneration
author_facet Athina Papadopoulou
Frederike C. Oertel
Claudia Chien
Joseph Kuchling
Hanna G. Zimmermann
Nadja Siebert
Seyedamirhosein Motamedi
Marcus D' Souza
Susanna Asseyer
Judith Bellmann-Strobl
Klemens Ruprecht
M. Mallar Chakravarty
Michael Scheel
Stefano Magon
Jens Wuerfel
Friedemann Paul
Alexander U. Brandt
author_sort Athina Papadopoulou
title Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study
title_short Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study
title_full Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study
title_fullStr Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study
title_full_unstemmed Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study
title_sort lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: a longitudinal study
publisher Elsevier
series NeuroImage: Clinical
issn 2213-1582
publishDate 2021-01-01
description Objectives: Lateral geniculate nucleus (LGN) volume is reduced after optic neuritis (ON) in neuromyelitis optica spectrum disorders (NMOSD). We aimed at a longitudinal assessment of LGN volume in NMOSD. Methods: Twenty-nine patients with aquaporin 4-IgG seropositive NMOSD (age: 47.8 ± 14.6 years (y), female: n = 27, history of ON (NMO-ON): n = 17, median time since ON: 3[1.2–12.1]y) and 18 healthy controls (HC; age: 39.3 ± 15.8y; female: n = 13) were included. Median follow-up was 4.1[1.1–4.7]y for patients and 1.7[0.9–3.2]y for HC. LGN volume was measured using a multi-atlas-based approach of automated segmentation on 3 Tesla magnetic resonance images. Retinal optical coherence tomography and probabilistic tractography of the optic radiations (OR) were also performed. Results: At baseline, NMO-ON patients had lower LGN volumes (395.4 ± 48.9 mm3) than patients without ON (NMO-NON: 450.7 ± 55.6 mm3; p = 0.049) and HC (444.5 ± 61.5 mm3, p = 0.025). LGN volume was associated with retinal neuroaxonal loss and microstructural OR damage. Longitudinally, there was no change in LGN volumes in the absence of ON, neither in all patients (B = −0.6, SE = 1.4, p = 0.670), nor in NMO-ON (B = −0.8, SE = 1.6, p = 0.617) and NMO-NON (B = 1.7, SE = 3.5, p = 0.650). However, in four patients with new ON during follow-up, LGN volume was reduced at last visit (median time since ON: 2.6 [1.8–3.9] y) compared to the measurement before ON (352 ± 52.7 vs. 371.1 ± 55.9 mm3; t = −3.6, p = 0.036). Conclusion: Although LGN volume is reduced after ON in NMOSD, this volume loss is not progressive over longer follow-up or independent of ON. Thus, our findings -at least in this relatively small cohort- do not support occult neurodegeneration of the afferent visual pathway in NMOSD.
topic Thalamus
Neurodegeneration
NMOSD
Anterograde degeneration
url http://www.sciencedirect.com/science/article/pii/S2213158221000528
work_keys_str_mv AT athinapapadopoulou lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT frederikecoertel lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT claudiachien lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT josephkuchling lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT hannagzimmermann lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT nadjasiebert lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT seyedamirhoseinmotamedi lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT marcusdsouza lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT susannaasseyer lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT judithbellmannstrobl lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT klemensruprecht lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT mmallarchakravarty lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT michaelscheel lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT stefanomagon lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT jenswuerfel lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT friedemannpaul lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
AT alexanderubrandt lateralgeniculatenucleusvolumechangesafteropticneuritisinneuromyelitisopticaalongitudinalstudy
_version_ 1721380479833210880
spelling doaj-4d92d201ac8b4ad5a5a1cd5383b5c2d12021-06-13T04:37:50ZengElsevierNeuroImage: Clinical2213-15822021-01-0130102608Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal studyAthina Papadopoulou0Frederike C. Oertel1Claudia Chien2Joseph Kuchling3Hanna G. Zimmermann4Nadja Siebert5Seyedamirhosein Motamedi6Marcus D' Souza7Susanna Asseyer8Judith Bellmann-Strobl9Klemens Ruprecht10M. Mallar Chakravarty11Michael Scheel12Stefano Magon13Jens Wuerfel14Friedemann Paul15Alexander U. Brandt16Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Neurologic Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedicine University Hospital Basel, University of Basel, Basel, SwitzerlandExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, University of California San Francisco, CA, USAExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Neurologic Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedicine University Hospital Basel, University of Basel, Basel, SwitzerlandExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyDepartment of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyCerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada; McGill University, Department of Psychiatry and Department of Biomedical Engineering, Montreal, CanadaExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neuroradiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyNeurologic Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedicine University Hospital Basel, University of Basel, Basel, Switzerland; Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, SwitzerlandMedical Image Analysis Center (MIAC AG) and Department for Biomedical Engineering, Basel, SwitzerlandExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyExperimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, University of California Irvine, CA, USA; Corresponding author at: NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Charitéplatz 1, DE-10117 Berlin, Germany.Objectives: Lateral geniculate nucleus (LGN) volume is reduced after optic neuritis (ON) in neuromyelitis optica spectrum disorders (NMOSD). We aimed at a longitudinal assessment of LGN volume in NMOSD. Methods: Twenty-nine patients with aquaporin 4-IgG seropositive NMOSD (age: 47.8 ± 14.6 years (y), female: n = 27, history of ON (NMO-ON): n = 17, median time since ON: 3[1.2–12.1]y) and 18 healthy controls (HC; age: 39.3 ± 15.8y; female: n = 13) were included. Median follow-up was 4.1[1.1–4.7]y for patients and 1.7[0.9–3.2]y for HC. LGN volume was measured using a multi-atlas-based approach of automated segmentation on 3 Tesla magnetic resonance images. Retinal optical coherence tomography and probabilistic tractography of the optic radiations (OR) were also performed. Results: At baseline, NMO-ON patients had lower LGN volumes (395.4 ± 48.9 mm3) than patients without ON (NMO-NON: 450.7 ± 55.6 mm3; p = 0.049) and HC (444.5 ± 61.5 mm3, p = 0.025). LGN volume was associated with retinal neuroaxonal loss and microstructural OR damage. Longitudinally, there was no change in LGN volumes in the absence of ON, neither in all patients (B = −0.6, SE = 1.4, p = 0.670), nor in NMO-ON (B = −0.8, SE = 1.6, p = 0.617) and NMO-NON (B = 1.7, SE = 3.5, p = 0.650). However, in four patients with new ON during follow-up, LGN volume was reduced at last visit (median time since ON: 2.6 [1.8–3.9] y) compared to the measurement before ON (352 ± 52.7 vs. 371.1 ± 55.9 mm3; t = −3.6, p = 0.036). Conclusion: Although LGN volume is reduced after ON in NMOSD, this volume loss is not progressive over longer follow-up or independent of ON. Thus, our findings -at least in this relatively small cohort- do not support occult neurodegeneration of the afferent visual pathway in NMOSD.http://www.sciencedirect.com/science/article/pii/S2213158221000528ThalamusNeurodegenerationNMOSDAnterograde degeneration