A neonatal blueprint for cardiac regeneration

Adult mammals undergo minimal regeneration following cardiac injury, which severely compromises cardiac function and contributes to the ongoing burden of heart failure. In contrast, the mammalian heart retains a transient capacity for cardiac regeneration during fetal and early neonatal life. Recent...

Full description

Bibliographic Details
Main Authors: Enzo R. Porrello, Eric N. Olson
Format: Article
Language:English
Published: Elsevier 2014-11-01
Series:Stem Cell Research
Online Access:http://www.sciencedirect.com/science/article/pii/S1873506114000683
Description
Summary:Adult mammals undergo minimal regeneration following cardiac injury, which severely compromises cardiac function and contributes to the ongoing burden of heart failure. In contrast, the mammalian heart retains a transient capacity for cardiac regeneration during fetal and early neonatal life. Recent studies have established the importance of several evolutionarily conserved mechanisms for heart regeneration in lower vertebrates and neonatal mammals including induction of cardiomyocyte proliferation, epicardial cell activation, angiogenesis, extracellular matrix deposition and immune cell infiltration. In this review, we provide an up-to-date account of the molecular and cellular basis for cardiac regeneration in lower vertebrates and neonatal mammals. The historical context for these recent findings and their ramifications for the future development of cardiac regenerative therapies are also discussed.
ISSN:1873-5061
1876-7753