Electrochemical Fingerprint of CuS-Hexagonal Chemistry from (<i>Bis</i>(<i>N</i>-1,4-Phenyl-<i>N</i>-(4-Morpholinedithiocarbamato) Copper(II) Complexes) as Photon Absorber in Quantum-Dot/Dye-Sensitised Solar Cells

The main deficit of quantum dot/dye-sensitised solar cells (QDSSCs) remains the absence of a photosensitiser that can absorb the entire visible spectrum and increase electrocatalytic activity by enhancing the conversion efficiency of QDSSCs. This placed great emphasis on the synthesis route adopted...

Full description

Bibliographic Details
Main Authors: Mojeed Adedoyin Agoro, Edson Leroy Meyer, Johannes Zanoxolo Mbese, Kwabena Manu
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/10/3/300
Description
Summary:The main deficit of quantum dot/dye-sensitised solar cells (QDSSCs) remains the absence of a photosensitiser that can absorb the entire visible spectrum and increase electrocatalytic activity by enhancing the conversion efficiency of QDSSCs. This placed great emphasis on the synthesis route adopted for the preparation of the sensitiser. Herein, we report the fabrication of hexagonal copper monosulfide (CuS) nanocrystals, both hexadecylamine (HDA) capped and uncapped, through thermal decomposition by thermogravimetric analysis (TGA) and a single-source precursor route. Morphological, structural, and electrochemical instruments were used to assert the properties of both materials. The CuS/HDA photosensitiser demonstrated an appropriate lifetime and electron transfer, while the electron back reaction of CuS lowered the electron lifetime in the QDSSCs. The higher electrocatalytic activity and interfacial resistance observed from current density-voltage (I–V) results agreed with electrochemical impedance spectroscopy (EIS) results for CuS/HDA. The successful fabrication of hexagonal CuS nanostructures of interesting conversion output suggested that both HDA capped and uncapped nanocrystals could be adopted in photovoltaic cells.
ISSN:2073-4344