Finite volume scheme for isotropic Keller-Segel model with general scalar diffusive functions*

This paper is devoted to the numerical analysis of a modified Keller-Segel model consisting of diffusion and chemotaxis with volume filling effect. Firstly, a finite volume scheme is generalized to the case of a Keller-Segel model allowing heterogeneities and discontinu...

Full description

Bibliographic Details
Main Authors: Saad Mazen Georges Chamoun, Raafat Talhouk
Format: Article
Language:English
Published: EDP Sciences 2014-09-01
Series:ESAIM: Proceedings and Surveys
Online Access:http://dx.doi.org/10.1051/proc/201445013
Description
Summary:This paper is devoted to the numerical analysis of a modified Keller-Segel model consisting of diffusion and chemotaxis with volume filling effect. Firstly, a finite volume scheme is generalized to the case of a Keller-Segel model allowing heterogeneities and discontinuities in the diffusion coefficients. For that, we start with the derivation of the discrete problem and then we establish a convergence result of the discrete solution to a weak solution of the continuous model. Finally, numerical tests illustrate the behavior of the solutions of this generalized numerical scheme.
ISSN:2267-3059