CRISPR/Cas9-Based Lateral Flow and Fluorescence Diagnostics

Clustered regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. We integrated commercially available reagents into a CRISPR/Cas9-based lateral fl...

Full description

Bibliographic Details
Main Authors: Mark J. Osborn, Akshay Bhardwaj, Samuel P. Bingea, Friederike Knipping, Colby J. Feser, Christopher J. Lees, Daniel P. Collins, Clifford J. Steer, Bruce R. Blazar, Jakub Tolar
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/8/2/23
Description
Summary:Clustered regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. We integrated commercially available reagents into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. We also developed a rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction. Our findings provide proof-of-principle for CRISPR/Cas9 point-of-care diagnosis as well as a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology.
ISSN:2306-5354