Seasonal SUHI Analysis Using Local Climate Zone Classification: A Case Study of Wuhan, China

The surface urban heat island (SUHI) effect poses a significant threat to the urban environment and public health. This paper utilized the Local Climate Zone (LCZ) classification and land surface temperature (LST) data to analyze the seasonal dynamics of SUHI in Wuhan based on the Google Earth Engin...

Full description

Bibliographic Details
Main Authors: Lingfei Shi, Feng Ling, Giles M. Foody, Zhen Yang, Xixi Liu, Yun Du
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:International Journal of Environmental Research and Public Health
Subjects:
Online Access:https://www.mdpi.com/1660-4601/18/14/7242
Description
Summary:The surface urban heat island (SUHI) effect poses a significant threat to the urban environment and public health. This paper utilized the Local Climate Zone (LCZ) classification and land surface temperature (LST) data to analyze the seasonal dynamics of SUHI in Wuhan based on the Google Earth Engine platform. In addition, the SUHI intensity derived from the traditional urban–rural dichotomy was also calculated for comparison. Seasonal SUHI analysis showed that (1) both LCZ classification and the urban–rural dichotomy confirmed that Wuhan’s SHUI effect was the strongest in summer, followed by spring, autumn and winter; (2) the maximum SUHI intensity derived from LCZ classification reached 6.53 °C, which indicated that the SUHI effect was very significant in Wuhan; (3) LCZ 8 (i.e., large low-rise) had the maximum LST value and LCZ G (i.e., water) had the minimum LST value in all seasons; (4) the LST values of compact high-rise/midrise/low-rise (i.e., LCZ 1–3) were higher than those of open high-rise/midrise/low-rise (i.e., LCZ 4–6) in all seasons, which indicated that building density had a positive correlation with LST; (5) the LST values of dense trees (i.e., LCZ A) were less than those of scattered trees (i.e., LCZ B) in all seasons, which indicated that vegetation density had a negative correlation with LST. This paper provides some useful information for urban planning and contributes to the healthy and sustainable development of Wuhan.
ISSN:1661-7827
1660-4601