Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes
Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of <inline-formula> <math display="inline"> <semantics> <mrow>...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-01-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/1/120 |
id |
doaj-4e5414c9473b45609d16508ed0125003 |
---|---|
record_format |
Article |
spelling |
doaj-4e5414c9473b45609d16508ed01250032020-11-24T21:34:57ZengMDPI AGSymmetry2073-89942019-01-0111112010.3390/sym11010120sym11010120Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence ClassesS. James Gates0Kevin Iga1Lucas Kang2Vadim Korotkikh3Kory Stiffler4Department of Physics, Brown University, Box 1843, 182 Hope Street, Providence, RI 02912, USANatural Science Division, Pepperdine University, 24255 Pacific Coast Hwy., Malibu, CA 90263, USADepartment of Physics, Brown University, Box 1843, 182 Hope Street, Providence, RI 02912, USACenter for String and Particle Theory-Department of Physics, University of Maryland, 4150 Campus Dr., College Park, MD 20472, USADepartment of Physics, Brown University, Box 1843, 182 Hope Street, Providence, RI 02912, USARecently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula>, the signed permutation group of three elements, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>, the signed permutation group of four elements. It is shown how all 36,864 adinkras can be generated via <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula> boson ×<inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula> color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner product has been used for some time, known as the <i>gadget</i>, which is used to distinguish adinkras. We show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>. We also comment on the importance of the gadget as it relates to separating out dynamics in terms of Kähler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical representations achieved in the preparatory first four sections, the final comprehensive achievement of this work is the construction of the universal <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula> non-linear <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula>-model.https://www.mdpi.com/2073-8994/11/1/120adinkrasequivalence classesholographyholoraumyrepresentation theorysupersymmetrysigma models |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. James Gates Kevin Iga Lucas Kang Vadim Korotkikh Kory Stiffler |
spellingShingle |
S. James Gates Kevin Iga Lucas Kang Vadim Korotkikh Kory Stiffler Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes Symmetry adinkras equivalence classes holography holoraumy representation theory supersymmetry sigma models |
author_facet |
S. James Gates Kevin Iga Lucas Kang Vadim Korotkikh Kory Stiffler |
author_sort |
S. James Gates |
title |
Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes |
title_short |
Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes |
title_full |
Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes |
title_fullStr |
Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes |
title_full_unstemmed |
Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes |
title_sort |
generating all 36,864 four-color adinkras via signed permutations and organizing into <i>ℓ</i>- and <i>ℓ</i>˜-equivalence classes |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2019-01-01 |
description |
Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula>, the signed permutation group of three elements, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>, the signed permutation group of four elements. It is shown how all 36,864 adinkras can be generated via <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula> boson ×<inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula> color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner product has been used for some time, known as the <i>gadget</i>, which is used to distinguish adinkras. We show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>. We also comment on the importance of the gadget as it relates to separating out dynamics in terms of Kähler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical representations achieved in the preparatory first four sections, the final comprehensive achievement of this work is the construction of the universal <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula> non-linear <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula>-model. |
topic |
adinkras equivalence classes holography holoraumy representation theory supersymmetry sigma models |
url |
https://www.mdpi.com/2073-8994/11/1/120 |
work_keys_str_mv |
AT sjamesgates generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses AT keviniga generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses AT lucaskang generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses AT vadimkorotkikh generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses AT korystiffler generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses |
_version_ |
1725947255805968384 |