Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes

Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of <inline-formula> <math display="inline"> <semantics> <mrow>...

Full description

Bibliographic Details
Main Authors: S. James Gates, Kevin Iga, Lucas Kang, Vadim Korotkikh, Kory Stiffler
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/1/120
id doaj-4e5414c9473b45609d16508ed0125003
record_format Article
spelling doaj-4e5414c9473b45609d16508ed01250032020-11-24T21:34:57ZengMDPI AGSymmetry2073-89942019-01-0111112010.3390/sym11010120sym11010120Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence ClassesS. James Gates0Kevin Iga1Lucas Kang2Vadim Korotkikh3Kory Stiffler4Department of Physics, Brown University, Box 1843, 182 Hope Street, Providence, RI 02912, USANatural Science Division, Pepperdine University, 24255 Pacific Coast Hwy., Malibu, CA 90263, USADepartment of Physics, Brown University, Box 1843, 182 Hope Street, Providence, RI 02912, USACenter for String and Particle Theory-Department of Physics, University of Maryland, 4150 Campus Dr., College Park, MD 20472, USADepartment of Physics, Brown University, Box 1843, 182 Hope Street, Providence, RI 02912, USARecently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula>, the signed permutation group of three elements, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>, the signed permutation group of four elements. It is shown how all 36,864 adinkras can be generated via <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula> boson &#215;<inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula> color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner product has been used for some time, known as the <i>gadget</i>, which is used to distinguish adinkras. We show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>. We also comment on the importance of the gadget as it relates to separating out dynamics in terms of K&#228;hler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical representations achieved in the preparatory first four sections, the final comprehensive achievement of this work is the construction of the universal <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula> non-linear <inline-formula> <math display="inline"> <semantics> <mi>&#963;</mi> </semantics> </math> </inline-formula>-model.https://www.mdpi.com/2073-8994/11/1/120adinkrasequivalence classesholographyholoraumyrepresentation theorysupersymmetrysigma models
collection DOAJ
language English
format Article
sources DOAJ
author S. James Gates
Kevin Iga
Lucas Kang
Vadim Korotkikh
Kory Stiffler
spellingShingle S. James Gates
Kevin Iga
Lucas Kang
Vadim Korotkikh
Kory Stiffler
Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes
Symmetry
adinkras
equivalence classes
holography
holoraumy
representation theory
supersymmetry
sigma models
author_facet S. James Gates
Kevin Iga
Lucas Kang
Vadim Korotkikh
Kory Stiffler
author_sort S. James Gates
title Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes
title_short Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes
title_full Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes
title_fullStr Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes
title_full_unstemmed Generating All 36,864 Four-Color Adinkras via Signed Permutations and Organizing into <i>ℓ</i>- and <i>ℓ</i>˜-Equivalence Classes
title_sort generating all 36,864 four-color adinkras via signed permutations and organizing into <i>ℓ</i>- and <i>ℓ</i>˜-equivalence classes
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2019-01-01
description Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula>, the signed permutation group of three elements, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>, the signed permutation group of four elements. It is shown how all 36,864 adinkras can be generated via <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula> boson &#215;<inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula> color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner product has been used for some time, known as the <i>gadget</i>, which is used to distinguish adinkras. We show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>3</mn> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>. We also comment on the importance of the gadget as it relates to separating out dynamics in terms of K&#228;hler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical representations achieved in the preparatory first four sections, the final comprehensive achievement of this work is the construction of the universal <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula> non-linear <inline-formula> <math display="inline"> <semantics> <mi>&#963;</mi> </semantics> </math> </inline-formula>-model.
topic adinkras
equivalence classes
holography
holoraumy
representation theory
supersymmetry
sigma models
url https://www.mdpi.com/2073-8994/11/1/120
work_keys_str_mv AT sjamesgates generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses
AT keviniga generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses
AT lucaskang generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses
AT vadimkorotkikh generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses
AT korystiffler generatingall36864fourcoloradinkrasviasignedpermutationsandorganizingintoiliandiliequivalenceclasses
_version_ 1725947255805968384