Key Technology and Experimental Study of Unequal Pitches Meshing between Metal Worm and Plastic Helical Gears

In traditional gear design, the design theory is based on a rigid hypothesis and is popularly adopted in the preparation of metal gear. Plastic gear designing lacks a mature design theory. Hence, scholars still follow the traditional gear design theory. There is a marked difference in the rigidity a...

Full description

Bibliographic Details
Main Authors: Zhaoyao Shi, Jihua Ren, Zhipeng Feng, Jing Li
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/1/333
Description
Summary:In traditional gear design, the design theory is based on a rigid hypothesis and is popularly adopted in the preparation of metal gear. Plastic gear designing lacks a mature design theory. Hence, scholars still follow the traditional gear design theory. There is a marked difference in the rigidity and stiffness between the conventional gear design and plastic gear features. In traditional design theory, the deformation is 0.2% (Note: To assess the material yield, conditional yield strength is calculated). Designing deformation can exceed 2% for plastic gears, and the difference can sometimes be more than tenfold. The traditional design theory cannot match the gear strength and precision in the design of plastic gear. In the case of plastic gear, due to numerous meshing teeth, the 2% deformation seen cannot be neglected and should be taken into account in the presence and absence of loading to improve the meshing condition. Improvement in the gear loading ability and reduction in the meshing noise can thus be achieved. Herein, we propose an unequal pitch design theory. The results of Finite Element Analysis (FEA) and experimental verification showed that the strength could be increased by 24% for unequal pitch design theory.
ISSN:2076-3417