A HERO for General Relativity

HERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast secular precession. We co...

Full description

Bibliographic Details
Main Author: Lorenzo Iorio
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/5/7/165
id doaj-4f9531088ffb4b878ea84c7b32ca7bc8
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Lorenzo Iorio
spellingShingle Lorenzo Iorio
A HERO for General Relativity
Universe
general relativity and gravitation
experimental studies of gravity
experimental tests of gravitational theories
satellite orbits
author_facet Lorenzo Iorio
author_sort Lorenzo Iorio
title A HERO for General Relativity
title_short A HERO for General Relativity
title_full A HERO for General Relativity
title_fullStr A HERO for General Relativity
title_full_unstemmed A HERO for General Relativity
title_sort hero for general relativity
publisher MDPI AG
series Universe
issn 2218-1997
publishDate 2019-07-01
description HERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast secular precession. We considered two possible scenarios&#8212;a fast, 4-h orbit with high perigee height of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1047</mn> <mspace width="0.166667em"></mspace> <mi>km</mi> </mrow> </semantics> </math> </inline-formula> and a slow, 21-h path with a low perigee height of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>642</mn> <mspace width="0.166667em"></mspace> <mi>km</mi> </mrow> </semantics> </math> </inline-formula>. HERO may detect, for the first time, the post-Newtonian orbital effects induced by the mass quadrupole moment <inline-formula> <math display="inline"> <semantics> <msub> <mi>J</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> of the Earth which, among other things, affects the semimajor axis <i>a</i> via a secular trend of ≃4&#8722;12 <inline-formula> <math display="inline"> <semantics> <mrow> <mi>cm</mi> <mspace width="0.166667em"></mspace> <msup> <mi>yr</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula>, depending on the orbital configuration. Recently, the secular decay of the semimajor axis of the passive satellite LARES was measured with an error as little as <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>.</mo> <mn>7</mn> <mspace width="0.166667em"></mspace> <mi>cm</mi> <mspace width="0.166667em"></mspace> <msup> <mi>yr</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula>. Also the post-Newtonian spin dipole (Lense-Thirring) and mass monopole (Schwarzschild) effects could be tested to a high accuracy depending on the level of compensation of the non-gravitational perturbations, not treated here. Moreover, the large eccentricity of the orbit would allow one to constrain several long-range modified models of gravity and accurately measure the gravitational red-shift as well. Each of the six Keplerian orbital elements could be individually monitored to extract the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>/</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> signature, or they could be suitably combined in order to disentangle the post-Newtonian effect(s) of interest from the competing mismodeled Newtonian secular precessions induced by the zonal harmonic multipoles <inline-formula> <math display="inline"> <semantics> <msub> <mi>J</mi> <mi>ℓ</mi> </msub> </semantics> </math> </inline-formula> of the geopotential. In the latter case, the systematic uncertainty due to the current formal errors <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">&#963;</mi> <msub> <mi>J</mi> <mi>ℓ</mi> </msub> </msub> </semantics> </math> </inline-formula> of a recent global Earth&#8217;s gravity field model are better than <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> for all the post-Newtonian effects considered, with a peak of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>≃</mo> <msup> <mn>10</mn> <mrow> <mo>&#8722;</mo> <mn>7</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> for the Schwarzschild-like shifts. Instead, the gravitomagnetic spin octupole precessions are too small to be detectable.
topic general relativity and gravitation
experimental studies of gravity
experimental tests of gravitational theories
satellite orbits
url https://www.mdpi.com/2218-1997/5/7/165
work_keys_str_mv AT lorenzoiorio aheroforgeneralrelativity
AT lorenzoiorio heroforgeneralrelativity
_version_ 1725280919074373632
spelling doaj-4f9531088ffb4b878ea84c7b32ca7bc82020-11-25T00:42:41ZengMDPI AGUniverse2218-19972019-07-015716510.3390/universe5070165universe5070165A HERO for General RelativityLorenzo Iorio0Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)-Istruzione, Viale Unità di Italia 68, 70125 Bari (BA), ItalyHERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast secular precession. We considered two possible scenarios&#8212;a fast, 4-h orbit with high perigee height of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1047</mn> <mspace width="0.166667em"></mspace> <mi>km</mi> </mrow> </semantics> </math> </inline-formula> and a slow, 21-h path with a low perigee height of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>642</mn> <mspace width="0.166667em"></mspace> <mi>km</mi> </mrow> </semantics> </math> </inline-formula>. HERO may detect, for the first time, the post-Newtonian orbital effects induced by the mass quadrupole moment <inline-formula> <math display="inline"> <semantics> <msub> <mi>J</mi> <mn>2</mn> </msub> </semantics> </math> </inline-formula> of the Earth which, among other things, affects the semimajor axis <i>a</i> via a secular trend of ≃4&#8722;12 <inline-formula> <math display="inline"> <semantics> <mrow> <mi>cm</mi> <mspace width="0.166667em"></mspace> <msup> <mi>yr</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula>, depending on the orbital configuration. Recently, the secular decay of the semimajor axis of the passive satellite LARES was measured with an error as little as <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mo>.</mo> <mn>7</mn> <mspace width="0.166667em"></mspace> <mi>cm</mi> <mspace width="0.166667em"></mspace> <msup> <mi>yr</mi> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula>. Also the post-Newtonian spin dipole (Lense-Thirring) and mass monopole (Schwarzschild) effects could be tested to a high accuracy depending on the level of compensation of the non-gravitational perturbations, not treated here. Moreover, the large eccentricity of the orbit would allow one to constrain several long-range modified models of gravity and accurately measure the gravitational red-shift as well. Each of the six Keplerian orbital elements could be individually monitored to extract the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <msub> <mi>J</mi> <mn>2</mn> </msub> <mo>/</mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> signature, or they could be suitably combined in order to disentangle the post-Newtonian effect(s) of interest from the competing mismodeled Newtonian secular precessions induced by the zonal harmonic multipoles <inline-formula> <math display="inline"> <semantics> <msub> <mi>J</mi> <mi>ℓ</mi> </msub> </semantics> </math> </inline-formula> of the geopotential. In the latter case, the systematic uncertainty due to the current formal errors <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="sans-serif">&#963;</mi> <msub> <mi>J</mi> <mi>ℓ</mi> </msub> </msub> </semantics> </math> </inline-formula> of a recent global Earth&#8217;s gravity field model are better than <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> for all the post-Newtonian effects considered, with a peak of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>≃</mo> <msup> <mn>10</mn> <mrow> <mo>&#8722;</mo> <mn>7</mn> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> for the Schwarzschild-like shifts. Instead, the gravitomagnetic spin octupole precessions are too small to be detectable.https://www.mdpi.com/2218-1997/5/7/165general relativity and gravitationexperimental studies of gravityexperimental tests of gravitational theoriessatellite orbits