Summary: | Mixed convection stagnation point flow of nanofluid by a vertical permeable circular cylinder has been addressed. Water is treated as ordinary liquid while nanoparticles include aluminium oxide, copper and titanium dioxide. Homogeneous-heterogeneous reactions are considered. The nonlinear higher order expressions are changed into first ordinary differential equations and then solved by built-in-Shooting method in mathematica. The results of velocity, temperature, concentration, skin friction and local Nusselt number are discussed. Our results demonstrate that surface drag force and heat transfer rate are enhanced linearly for higher estimation of curvature parameter. Further surface drag force decays for aluminium oxide and it enhances for copper nanoparticle. Heat transfer rate enhances with increasing all three types of nanoparticles. In addition, the lowest heat transfer rate is obtained in case of titanium dioxide when compared with copper and aluminium oxide. Keywords: Mixed convection, Stagnation point flow, Homogeneous-heterogeneous reactions, Nanofluids
|