An engineered multicomponent bone marrow niche for the recapitulation of hematopoiesis at ectopic transplantation sites

Abstract Background Bone marrow (BM) niches are often inaccessible for controlled experimentation due to their difficult accessibility, biological complexity, and three-dimensional (3D) geometry. Methods Here, we report the development and characterization of a BM model comprising of cellular and st...

Full description

Bibliographic Details
Main Authors: Mónica S. Ventura Ferreira, Christian Bergmann, Isabelle Bodensiek, Kristina Peukert, Jessica Abert, Rafael Kramann, Paul Kachel, Björn Rath, Stephan Rütten, Ruth Knuchel, Benjamin L. Ebert, Horst Fischer, Tim H. Brümmendorf, Rebekka K. Schneider
Format: Article
Language:English
Published: BMC 2016-01-01
Series:Journal of Hematology & Oncology
Online Access:http://link.springer.com/article/10.1186/s13045-016-0234-9
Description
Summary:Abstract Background Bone marrow (BM) niches are often inaccessible for controlled experimentation due to their difficult accessibility, biological complexity, and three-dimensional (3D) geometry. Methods Here, we report the development and characterization of a BM model comprising of cellular and structural components with increased potential for hematopoietic recapitulation at ectopic transplantation sites. Cellular components included mesenchymal stromal cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs). Structural components included 3D β-tricalcium phosphate (β-TCP) scaffolds complemented with Matrigel or collagen I/III gels for the recreation of the osteogenic/extracellular character of native BM. Results In vitro, β-TCP/Matrigel combinations robustly maintained proliferation, osteogenic differentiation, and matrix remodeling capacities of MSCs and maintenance of HSPCs function over time. In vivo, scaffolds promoted strong and robust recruitment of hematopoietic cells to sites of ectopic transplantation, vascularization, and soft tissue formation. Conclusions Our tissue-engineered BM system is a powerful tool to explore the regulatory mechanisms of hematopoietic stem and progenitor cells for a better understanding of hematopoiesis in health and disease.
ISSN:1756-8722