Design and Optimization of Highly Sensitive Photonic Crystal Fiber with Low Confinement Loss for Ethanol Detection

In this paper, two highly sensitive photonic crystal fiber (PCF) structures with microstructure core and cladding have been demonstrated for Ethanol sensing. The microstructure core of both proposed PCFs is designed with supplementary holes in an octagonal formation. We have investigated the re...

Full description

Bibliographic Details
Main Authors: Md. Faizul Huq Arif, Sayed Asaduzzaman, Md. Jaminul Haque Biddut, Kawsar Ahmed
Format: Article
Language:English
Published: Universitas Indonesia 2016-10-01
Series:International Journal of Technology
Subjects:
Online Access:http://ijtech.eng.ui.ac.id/article/view/357
Description
Summary:In this paper, two highly sensitive photonic crystal fiber (PCF) structures with microstructure core and cladding have been demonstrated for Ethanol sensing. The microstructure core of both proposed PCFs is designed with supplementary holes in an octagonal formation. We have investigated the relative sensitivity and the confinement loss of the proposed PCF structures employing a full vectorial finite element method (FEM). The proposed PCFs work at a wide transmission band covering 0.8 µm to 2 µm and exhibit high sensitivity and low confinement loss simultaneously. The numerical analysis shows that the circular shape of air holes in the first ring is a more salient attribute for increasing sensitivity and the presence of the square shape of air holes in the first ring shows better performance to reduce confinement loss.
ISSN:2086-9614
2087-2100