Photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparison

<p>This work describes the latest design, calibration and application of a near-infrared laser diode-based photoacoustic (PA) hygrometer developed for total water content measurement in simulated atmospheric freezing precipitation and high ice water content conditions with relevance in fundame...

Full description

Bibliographic Details
Main Authors: B. Lang, W. Breitfuss, S. Schweighart, P. Breitegger, H. Pervier, A. Tramposch, A. Klug, W. Hassler, A. Bergmann
Format: Article
Language:English
Published: Copernicus Publications 2021-03-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/2477/2021/amt-14-2477-2021.pdf
id doaj-50f523b4f5f845b9819734cc49024bec
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author B. Lang
B. Lang
B. Lang
W. Breitfuss
S. Schweighart
P. Breitegger
H. Pervier
A. Tramposch
A. Klug
W. Hassler
A. Bergmann
spellingShingle B. Lang
B. Lang
B. Lang
W. Breitfuss
S. Schweighart
P. Breitegger
H. Pervier
A. Tramposch
A. Klug
W. Hassler
A. Bergmann
Photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparison
Atmospheric Measurement Techniques
author_facet B. Lang
B. Lang
B. Lang
W. Breitfuss
S. Schweighart
P. Breitegger
H. Pervier
A. Tramposch
A. Klug
W. Hassler
A. Bergmann
author_sort B. Lang
title Photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparison
title_short Photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparison
title_full Photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparison
title_fullStr Photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparison
title_full_unstemmed Photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparison
title_sort photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparison
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2021-03-01
description <p>This work describes the latest design, calibration and application of a near-infrared laser diode-based photoacoustic (PA) hygrometer developed for total water content measurement in simulated atmospheric freezing precipitation and high ice water content conditions with relevance in fundamental icing research, aviation testing, and certification. The single-wavelength and single-pass PA absorption cell is calibrated for molar water vapor fractions with a two-pressure humidity generator integrated into the instrument. Laboratory calibration showed an estimated measurement accuracy better than <span class="inline-formula">3.3</span> % in the water vapor mole fraction range of 510–12 360 <span class="inline-formula">ppm</span> (<span class="inline-formula">5</span> % from 250–21 200 <span class="inline-formula">ppm</span>) with a theoretical limit of detection (3<span class="inline-formula"><i>σ</i></span>) of <span class="inline-formula">3.2</span> <span class="inline-formula">ppm</span>. The hygrometer is examined in combination with a basic isokinetic evaporator probe (IKP) and sampling system designed for icing wind tunnel applications, for which a general description of total condensed water content (CWC) measurements and uncertainties are presented. Despite the current limitation of the IKP to a hydrometeor mass flux below <span class="inline-formula">90</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7c357c7c8d9a58020f6dc78efa08ad26"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-2477-2021-ie00001.svg" width="46pt" height="15pt" src="amt-14-2477-2021-ie00001.png"/></svg:svg></span></span>, a CWC measurement accuracy better than <span class="inline-formula">20</span> % is achieved by the instrument above a CWC of <span class="inline-formula">0.14</span> <span class="inline-formula">g m<sup>−3</sup></span> in cold air (<span class="inline-formula">−30</span> <span class="inline-formula"><sup>∘</sup></span>C) with suitable background humidity measurement. Results of a comparison to the Cranfield University IKP instrument in freezing drizzle and rain show a CWC agreement of the two instruments within <span class="inline-formula">20</span> %, which demonstrates the potential of PA hygrometers for water content measurement in atmospheric icing conditions.</p>
url https://amt.copernicus.org/articles/14/2477/2021/amt-14-2477-2021.pdf
work_keys_str_mv AT blang photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT blang photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT blang photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT wbreitfuss photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT sschweighart photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT pbreitegger photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT hpervier photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT atramposch photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT aklug photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT whassler photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
AT abergmann photoacoustichygrometerforicingwindtunnelwatercontentmeasurementdesignanalysisandintercomparison
_version_ 1724177535583911936
spelling doaj-50f523b4f5f845b9819734cc49024bec2021-03-31T12:08:34ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-03-01142477250010.5194/amt-14-2477-2021Photoacoustic hygrometer for icing wind tunnel water content measurement: design, analysis, and intercomparisonB. Lang0B. Lang1B. Lang2W. Breitfuss3S. Schweighart4P. Breitegger5H. Pervier6A. Tramposch7A. Klug8W. Hassler9A. Bergmann10Graz University of Technology, Institute of Electrical Measurement and Sensor Systems, Graz, AustriaFH JOANNEUM GmbH, Institute of Aviation, Graz, AustriaAVL List GmbH, Nanophysics & Sensor Technologies, Graz, AustriaRTA Rail Tec Arsenal Fahrzeugversuchsanlage GmbH, Vienna, AustriaFH JOANNEUM GmbH, Institute of Aviation, Graz, AustriaGraz University of Technology, Institute of Electrical Measurement and Sensor Systems, Graz, AustriaCranfield University, School of Aerospace, Transport and Manufacturing, Cranfield, United KingdomFH JOANNEUM GmbH, Institute of Aviation, Graz, AustriaAVL List GmbH, Nanophysics & Sensor Technologies, Graz, AustriaFH JOANNEUM GmbH, Institute of Aviation, Graz, AustriaGraz University of Technology, Institute of Electrical Measurement and Sensor Systems, Graz, Austria<p>This work describes the latest design, calibration and application of a near-infrared laser diode-based photoacoustic (PA) hygrometer developed for total water content measurement in simulated atmospheric freezing precipitation and high ice water content conditions with relevance in fundamental icing research, aviation testing, and certification. The single-wavelength and single-pass PA absorption cell is calibrated for molar water vapor fractions with a two-pressure humidity generator integrated into the instrument. Laboratory calibration showed an estimated measurement accuracy better than <span class="inline-formula">3.3</span> % in the water vapor mole fraction range of 510–12 360 <span class="inline-formula">ppm</span> (<span class="inline-formula">5</span> % from 250–21 200 <span class="inline-formula">ppm</span>) with a theoretical limit of detection (3<span class="inline-formula"><i>σ</i></span>) of <span class="inline-formula">3.2</span> <span class="inline-formula">ppm</span>. The hygrometer is examined in combination with a basic isokinetic evaporator probe (IKP) and sampling system designed for icing wind tunnel applications, for which a general description of total condensed water content (CWC) measurements and uncertainties are presented. Despite the current limitation of the IKP to a hydrometeor mass flux below <span class="inline-formula">90</span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">g</mi><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace width="0.125em" linebreak="nobreak"/><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="7c357c7c8d9a58020f6dc78efa08ad26"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-2477-2021-ie00001.svg" width="46pt" height="15pt" src="amt-14-2477-2021-ie00001.png"/></svg:svg></span></span>, a CWC measurement accuracy better than <span class="inline-formula">20</span> % is achieved by the instrument above a CWC of <span class="inline-formula">0.14</span> <span class="inline-formula">g m<sup>−3</sup></span> in cold air (<span class="inline-formula">−30</span> <span class="inline-formula"><sup>∘</sup></span>C) with suitable background humidity measurement. Results of a comparison to the Cranfield University IKP instrument in freezing drizzle and rain show a CWC agreement of the two instruments within <span class="inline-formula">20</span> %, which demonstrates the potential of PA hygrometers for water content measurement in atmospheric icing conditions.</p>https://amt.copernicus.org/articles/14/2477/2021/amt-14-2477-2021.pdf