Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feedwater line break

For the structural integrity evaluation of pressurized water reactor (PWR) steam generator (SG) tubes subjected to transient hydraulic loading, determination of the tube-to-tube gap velocity and static pressure distributions along the tubes is prerequisite. This paper addresses both computational fl...

Full description

Bibliographic Details
Main Authors: Jong Chull Jo, Jae-Jun Jeong, Frederick J. Moody
Format: Article
Language:English
Published: Elsevier 2021-03-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573320308597
Description
Summary:For the structural integrity evaluation of pressurized water reactor (PWR) steam generator (SG) tubes subjected to transient hydraulic loading, determination of the tube-to-tube gap velocity and static pressure distributions along the tubes is prerequisite. This paper addresses both computational fluid dynamics (CFD) and analytical approaches for predicting the tube-to-tube gap velocity and static pressure distributions during blowdown following a feedwater line break (FWLB) accident at a PWR SG. First of all, a comparative study on CFD calculations of the transient velocity and pressure distributions in the SG secondary sides for two different models having 30 or no tubes is performed. The result shows that the velocities of sub-cooled water flowing between any adjacent two tubes of a tubed SG model during blowdown can be roughly estimated by applying the specified SG secondary side porosity to those of the no-tubed SG model. Secondly, simplified analytical approximate solutions for the steady two-dimensional SG secondary flow velocity and pressure distributions under a given discharge flowrate are derived using a line sink model. The simplified analytical solutions are validated by comparing them to the CFD calculations.
ISSN:1738-5733